Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Biosciences

Profile

Publication details for Professor Martin Cann

Cann, M.J. (2007). Sodium regulation of GAF domain function. Biochemical Society Transactions 35(5): 1032-1034.

Author(s) from Durham

Abstract

Cyclic nucleotide PDEs (phosphodiesterases) regulate cellular levels of cAMP and cGMP by controlling the rate of degradation. Several mammalian PDE isoforms possess N-terminal GAF (found in cGMP PDEs, Anabaena adenylate cyclases and Escherichia coli FhlA; where FhlA is formate hydrogen lyase transcriptional activator) domains that bind cyclic nucleotides. Similarly, the CyaB1 and CyaB2 ACs (adenylate cyclases) of the cyanobacterium Anabaena PCC 7120 bind cAMP through one (CyaB1) or two (CyaB2) N-terminal GAF domains and mediate autoregulation of the AC domain. Sodium inhibits the activity of CyaB1, CyaB2 and mammalian PDE2A in vitro through modulation of GAF domain function. Furthermore, genetic ablation of cyaB1 and cyaB2 gives rise to Anabaena strains defective in homoeostasis at limiting sodium. Sodium regulation of GAF domain function has therefore been conserved since the eukaryotic/prokaryotic divergence. The GAF domain is the first identified protein domain to directly sense and signal changes in environmental sodium.