We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Biosciences


Publication details for Dr Gary Sharples

Sharples, G.J., Corbett, L.M., McGlynn, P. & Bolt, E.L. (1999). DNA structure specificity of Rap endonuclease. Nucleic Acids Research 27: 4121-4127.

Author(s) from Durham


The Rap protein of phage lambda is an endonuclease that nicks branched DNA structures. It has been proposed that Rap can nick D-loops formed during phage recombination to generate splice products without the need for the formation of a 4-strand (Holliday) junction. The structure specificity of Rap was investigated using a variety of branched DNA molecules made by annealing partially complementary oligo-nucleotides. On Holliday junctions, Rap endonuclease shows a requirement for magnesium or manganese ions, with Mn(2+)supporting 5-fold more cleavage than Mg(2+). The location of endonuclease incisions was determined on 3'-tailed D-loop, bubble, flayed duplex, 5'-flap and Y junction DNA substrates. In all cases, Rap preferentially cleaves at the branch point of these molecules. With a flayed duplex, incisions are made in the duplex adjacent to the single-strand arms. Comparison of binding and cleavage specificities revealed that Rap is highly structure-specific and exhibits a clear preference for 4- and 3-stranded DNA over Y and flayed duplex DNA. Almost no binding or cleavage was detected with duplex, partial duplex and single-stranded DNA. Thus Rap endonuclease shows a bias for structures that resemble D-loop and Holliday junction recombination intermediates.