Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Biosciences

Profile

Publication details for Professor Paul Denny

Norcliffe, J.L., Mina, J.G., Alvarez-Ruiz, E., Cantizani-Perez, J., de Dios-Anton, F., Colmenarejo, G., Gonzalez-Del Valle, S., Marco-Martin, M., Fiandor, J.M., Martin-Plaza, J.J., Steel, P.G. & Denny, P.W. (2018). Identifying inhibitors of the Leishmania inositol phosphorylceramide synthase with antiprotozoal activity using a yeast-based assay and ultra-high throughput screening platform. Scientific Reports 8: 3938.

Author(s) from Durham

Abstract

Leishmaniasis is a Neglected Tropical Disease caused by the insect-vector borne protozoan parasite, Leishmania species. Infection affects millions of the world’s poorest, however vaccines are absent and drug therapy limited. Recently, public-private partnerships have developed to identify new modes of controlling leishmaniasis. Drug discovery is a significant part of these efforts and here we describe the development and utilization of a novel assay to identify antiprotozoal inhibitors of the Leishmania enzyme, inositol phosphorylceramide (IPC) synthase. IPC synthase is a membrane-bound protein with multiple transmembrane domains, meaning that a conventional in vitro assay using purified protein in solution is highly challenging. Therefore, we utilized Saccharomyces cerevisiae as a vehicle to facilitate ultra-high throughput screening of 1.8 million compounds. Antileishmanial benzazepanes were identified and shown to inhibit the enzyme at nanomolar concentrations. Further chemistry produced a benzazepane that demonstrated potent and specific inhibition of IPC synthase in the Leishmania cell.