We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Biosciences


Publication details for Dr Tim R Blower

Blower, T.R., Short, F.L., Fineran, P.C. & Salmond, G.P. (2012). Viral molecular mimicry circumvents abortive infection and suppresses bacterial suicide to make hosts permissive for replication. Bacteriophage 2(4): 234-238.

Author(s) from Durham


The global interplay between bacteria and bacteriophages has generated many macromolecules useful in biotechnology, through the co-evolutionary see-saw of bacterial defense and viral counter-attack measures. Bacteria can protect themselves using abortive infection systems, which induce altruistic suicide in an infected cell and therefore protect the clonal population at the expense of the infected individual. Our recent paper describes how bacteriophage ΦTE successfully subverted the activity of a plasmid-borne abortive infection system. ΦTE evolved mimics of the small RNA antitoxin that naturally inhibits the active toxin component of this anti-viral mechanism. These mutant phages further manipulated the behavior of the host population, through transduction of the plasmid encoding the abortive infection system. Transductants thereby became enslaved by the abortive infection system, committing suicide in response to infection by the original phage population. In effect, the new host was infected by an “addictive altruism,” to the advantage of the resistant bacteriophage.


Addendum to: Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GP. Viral evasion of a bacterial suicide system by RNA-based molecular
mimicry enables infectious altruism. PLoS Genet 2012; 8: e1003023; PMID: 23109916; https://doi.