Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Biosciences

Profile

Publication details for Professor Stephen G Willis

Mason, T.H.E., Apollonio, M., Chirichella, R., Willis, S.G. & Stephens, P.A (2014). Environmental change and long-term body mass declines in an alpine mammal. Frontiers in Zoology 11: 69.

Author(s) from Durham

Abstract

IntroductionClimate and environmental change have driven widespread changes in body size, particularly declines, across a range of taxonomic groups in recent decades. Size declines could substantially impact on the functioning of ecosystems. To date, most studies suggest that temporal trends in size have resulted indirectly from climate change modifying resource availability and quality, affecting the ability of individuals to acquire resources and grow.ResultsHere, we investigate striking long-term body mass declines in juvenile Alpine chamois (Rupicapra rupicapra), within three neighbouring populations in the Italian Alps. We find strong evidence that increasing population density and warming temperatures during spring and summer are linked to the mass declines. We find no evidence that the timing or productivity of resources have been altered during this period.ConclusionsWe conclude that it is unlikely that environmental change has driven body size change indirectly via effects on resource productivity or phenology. Instead, we propose that environmental change has limited the ability of individuals to acquire resources. This could be due to increases in the intensity of competition and decreases in time spent foraging, owing to high temperatures. Our findings add weight to a growing body of evidence for long-term body size reductions and provide considerable insight into the potential drivers of such trends. Furthermore, we highlight the potential for appropriate management, for instance increases in harvest size, to counteract the impacts of climate change on body mass.