Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Biosciences

Academic Staff

Publication details for Dr Akis (Iakowos) Karakesisoglou

Rapisarda, Valentina, Malashchuk, Igor, Asamaowei, Inemo E., Poterlowicz, Krzysztof, Fessing, Michael Y., Sharov, Andrey A., Karakesisoglou, Iakowos, Botchkarev, Vladimir A. & Mardaryev, Andrei (2017). p63 transcription factor regulates nuclear shape and expression of nuclear envelope-associated genes in epidermal keratinocytes. Journal of Investigative Dermatology 137(10): 2157-2167.

Author(s) from Durham

Abstract

The maintenance of a proper nuclear architecture and 3D organization of the genes, enhancer elements and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by marked decrease in expression of several nuclear envelop-associated components (Lamin B1, Lamin A/C, SUN1, Nesprin-3, Plectin) compared to controls. Furthermore, ChIP-qPCR assay showed enrichment of p63 on Sun1, Syne3 and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks H3K27me3, H3K9me3 and heterochromatin protein 1- alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription towards the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression programme in the epidermis.