We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Research & business

Research lectures, seminars and events

The events listed in this area are research seminars, workshops and lectures hosted by Durham University departments and research institutes. If you are not a member of the University, but  wish to enquire about attending one of the events please contact the organiser or host department.


November 2019
October 2019 December 2019
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

Events for 7 November 2019

Andreas Vlachidis: Using dates as contextual information for personalized cultural heritage experiences

1:00pm, E240

Semantics can be engaged to promote reflection on cultural heritage by means of dates (historical events or annual commemorations), owing to their connections to a collection of items and to the visitors’ interests. Such links to specific dates can trigger curiosity, increase retention, and guide visitors around the venue following new appealing narratives in subsequent visits. The proposal has been explored and evaluated on the collection of the Archaeological Museum of Tripoli (Greece), for which a team of humanities experts wrote a set of diverse narratives about the exhibits. A year-round calendar was crafted so that certain narratives would be more or less relevant on any given day. Expanding on this calendar, personalised recommendations can be made by sorting out those relevant narratives according to personal events and interests recorded in the profiles of the target users. Evaluation of the associations by experts and potential museum visitors shows that the proposed approach can discover meaningful connections, while many others that are more incidental can still contribute to the intended cognitive phenomena.

Contact for more information about this event.

Lukasz Szpruch: Mean-Field Langevin Dynamics and Energy Landscape of Neural Networks

2:00pm, zoom

We present a probabilistic analysis of the long-time behaviour of the nonlocal, diffusive equa- tions with a gradient flow structure in 2-Wasserstein metric, namely, the Mean-Field Langevin Dynamics (MFLD). Our work is motivated by a desire to provide a theoretical underpinning for the convergence of stochastic gradient type algorithms widely used for non-convex learning tasks such as training of deep neural networks. The key insight is that the certain class of the finite dimensional non-convex problems becomes convex when lifted to infinite dimensional space of measures. We leverage this observation and show that the corresponding energy functional defined on the space of probability measures has a unique minimiser which can be characterised by a first order condition using the notion of linear functional de- rivative. Next, we show that the flow of marginal laws induced by the MFLD converges to the stationary distribution which is exactly the minimiser of the energy functional. We show that this convergence is exponential under conditions that are satisfied for highly regularised learning tasks. At the heart of our analysis is a pathwise perspective on Otto calculus used in gradient flow literature which is of independent interest. Our proof of convergence to stationary probability measure is novel and it relies on a generalisation of LaSalle’s invariance principle. Importantly we do not assume that interaction potential of MFLD is of convolution type nor that has any particular symmetric structure. This is critical for applications. Finally, we show that the error between finite dimensional optimisation problem and its infinite dimensional limit is of order one over the number of parameters.

Contact for more information about this event.