Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Mathematical Sciences

Academic Staff

Publication details for Paul Mansfield

Mansfield, Paul (2004). Solving the functional Schrödinger equation: Yang-Mills string tension and surface critical scaling. Journal of High Energy Physics 2004(04): 059.

Author(s) from Durham

Abstract

Motivated by a heuristic model of the Yang-Mills vacuum that accurately describes the string-tension in three dimensions we develop a systematic method for solving the functional Schrödinger equation in a derivative expansion. This is applied to the Landau-Ginzburg theory that describes surface critical scaling in the Ising model. A Renormalisation Group analysis of the solution yields the value η = 1.003 for the anomalous dimension of the correlation function of surface spins which compares well with the exact result of unity implied by Onsager's solution. We give the expansion of the corresponding β-function to 17-th order (which receives contributions from up to 17-loops in conventional perturbation theory).