We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Mathematical Sciences

Academic Staff

Publication details for Michele Del Zotto

Del Zotto, Michele & Lockhart, Guglielmo (2018). Universal features of BPS strings in six-dimensional SCFTs. Journal of High Energy Physics 2018(8): 173.

Author(s) from Durham


In theories with extended supersymmetry the protected observables of UV superconformal fixed points are found in a number of contexts to be encoded in the BPS solitons along an IR Coulomb-like phase. For six-dimensional SCFTs such a role is played by the BPS strings on the tensorial Coulomb branch. In this paper we develop a uniform description of the worldsheet theories of a BPS string for rank-one 6d SCFTs. These strings are the basic constituents of the BPS string spectrum of arbitrary rank six-dimensional models, which they generate by forming bound states. Motivated by geometric engineering in F-theory, we describe the worldsheet theories of the BPS strings in terms of topologically twisted 4d N=2 theories in the presence of 1/2-BPS 2d (0, 4) defects. As the superconformal point of a 6d theory with gauge group G is approached, the resulting worldsheet theory flows to an N=(0, 4) NLSM with target the moduli space of one G instanton, together with a nontrivial left moving bundle characterized by the matter content of the six-dimensional model. We compute the anomaly polynomial and central charges of the NLSM, and argue that the 6d flavor symmetry F is realized as a current algebra on the string, whose level we compute. We find evidence that for generic theories the G dependence is captured at the level of the elliptic genus by characters of an affine Kac-Moody algebra at negative level, which we interpret as a subsector of the chiral algebra of the BPS string worldsheet theory. We also find evidence for a spectral flow relating the R-R and NS-R elliptic genera. These properties of the string CFTs lead to constraints on their spectra, which in combination with modularity allow us to determine the elliptic genera of a vast number of string CFTs, leading also to novel results for 6d and 5d instanton partition functions.