Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Mathematical Sciences

Academic Staff

Publication details for Peter Wyper

Kumar, Pankaj, Karpen, Judith T., Antiochos, Spiro K., Wyper, Peter F., DeVore, C. Richard & DeForest, Craig E. (2019). Multiwavelength Study of Equatorial Coronal-hole Jets. The Astrophysical Journal 873(1): 93.

Author(s) from Durham

Abstract

Jets (transient/collimated plasma ejections) occur frequently throughout the solar corona and contribute mass/energy to the corona and solar wind. By combining numerical simulations and high-resolution observations, we have made substantial progress recently on determining the energy buildup and release processes in these jets. Here we describe a study of 27 equatorial coronal-hole jets using Solar Dynamics Observatory/Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager observations on 2013 June 27–28 and 2014 January 8–10. Out of 27 jets, 18 (67%) are associated with mini-filament ejections; the other nine (33%) do not show mini-filament eruptions but do exhibit mini-flare arcades and other eruptive signatures. This indicates that every jet in our sample involved a filament-channel eruption. From the complete set of events, six jets (22%) are apparently associated with tiny flux-cancellation events at the polarity inversion line, and two jets (7%) are associated with sympathetic eruptions of filaments from neighboring bright points. Potential-field extrapolations of the source-region photospheric magnetic fields reveal that all jets originated in the fan-spine topology of an embedded bipole associated with an extreme ultraviolet coronal bright point. Hence, all our jets are in agreement with the breakout model of solar eruptions. We present selected examples and discuss the implications for the jet energy buildup and initiation mechanisms.