We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Mathematical Sciences

Academic Staff

Publication details for Tahani Coolen-Maturi

Tee, Kong Fah, Pesinis, Konstantinos & Coolen-Maturi, Tahani (2019). Competing risks survival analysis of ruptured gas pipelines: A nonparametric predictive approach. International Journal of Pressure Vessels and Piping 175: 103919.

Author(s) from Durham


Risk analysis based on historical failure data can form an integral part of the integrity management of oil and gas pipelines. The scarcity and lack of consistency in the information provided by major incident databases leads to non-specific results of the risk status of pipes under consideration. In order to evaluate pipeline failure rates, the rate of occurrence of failures is commonly adopted. This study aims to derive inductive inferences from the 179 reported ruptures of a set of onshore gas transmission pipelines, reported in the PHMSA database for the period from 2002 to 2014. Failure causes are grouped in an integrated manner and the impact of each group in the probability of rupture is examined. Towards this, nonparametric predictive inference (NPI) is employed for competing risks survival analysis. This method provides interval probabilities, also known as imprecise reliability, in that probabilities and survival functions are quantified via upper and lower bounds. The focus is on a future pipe component (segment) that ruptures due to a specific failure cause among a range of competing risks. The results can be used to examine and implement optimal maintenance strategies based on relative risk prioritization.