We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Mathematical Sciences

Academic Staff

Publication details for Tahani Coolen-Maturi

Alabdulhadi, M.H., Coolen, F.P.A. & Coolen-Maturi, T. (2019). Nonparametric predictive comparison of two diagnostic tests based on total numbers of correctly diagnosed individuals. Journal of Statistical Theory and Practice 13: 38.

Author(s) from Durham


In clinical applications, it is important to compare and study the ability of diagnostic tests to discriminate between individuals with and without the disease. In this paper, comparison of two diagnostic tests is presented and discussed using nonparametric predictive inference (NPI). We compare the two tests by considering the total numbers of correct diagnoses for specific numbers of future healthy individuals and future patients. This NPI approach for comparison of diagnostic tests is also generalized by the use of weighted sums for the healthy and patients groups, reflecting possibly different importance of correct diagnoses. Examples are provided to illustrate the new method.