Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Mathematical Sciences

Staff

Publication details for Dr John Bolton

Bolton, John. & Woodward, L.M. (2006). The space of harmonic two-spheres in the unit four-sphere. Tohoku Mathematical Journal 58(2): 231-236.

Author(s) from Durham

Abstract

A harmonic map of the Riemann sphere into the unit 4-dimensional sphere has area 4 pi d for some positive integer d, and it is well-known that the space of such maps may be given the structure of a complex algebraic variety of dimension 2d+4. When d is less than or equal to 2, the subspace consisting of those maps which are linearly full is empty. We use the twistor fibration from complex projective 3-space to the 4-sphere to show that, if d is equal to 3,4 or 5, this subspace is a complex manifold.