Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Staff

Prof Wojtek Zakrzewski, PhD

Professor, Theoretical Particle Physics in the Department of Mathematical Sciences

Contact Prof Wojtek Zakrzewski (email at w.j.zakrzewski@durham.ac.uk)

Supervises

Research Groups

  • Applied Mathematics: Biomathematics
  • Applied Mathematics: Theoretical Particle & Mathematical Physics

Research Interests

  • Mathematical physics

Selected Publications

Journal Article

Conference Paper

  • Brizhik, L., Eremko, A. Piette, B. & Zakrzewski, W.J. (2010), Ratchet effect of Davydov's solitons in nonlinear low-dimensional nanosystems, International Journal of Quantum Chemistry 110: Molecular Self-Organization in Micro-, Nano-, and Macro-Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins”. Kiev, Wiley, Kiev, 25-37.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1994), General Structures in (2+1) Dimensional Models, in Spatschek, K.H. & Mertens, F.G. eds, Nonlinear Coherent Structures in Physics and Biology Plenum Press, 283-286.

Conference Proceeding

  • Brizhik, L., Eremko, A., Piette, B. & Zakrzewski, W.J. (2009). Davydov's solitons in zigzag carbon nanotubes. Molecular Self-Organization in Micro-, Nano-, and Macro-Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins, Wiley.
  • Brizhik, L. Eremko, A. Ferreira, L.A. Piette, B. & Zakrzewski, W.J. (2009). Some Properties of Solitons. SelfOrganization of Molecular Systems, Kiev.
  • Ferreira, L.A. Piette, B. & Zakrzewski, W.J. (2008). Dynamics of the topological structures in inhomogeneous media.
  • Brizhik, L. Eremko, A. Piette, B. & Zakrzewski, W. (2008). Effects of Periodic electromagnetic Field on Charge Transport in Macromolecules. Frohlich Symposium, Biophysical Aspects of Cancer: Electromagnetic Mechanisms.
  • Piette, B. & Zakrzewski, W.J. (2008). Scattering of sine-Gordon Kinks and Breathers on a Finite Width Well. Dynamic Systems and Applications, Atlanta, Georgia, USA.
  • Piette, B. & Zakrzewski, W.J. (2008). Some Aspects of Dynamics of Topological Solitons. 22nd Max Born Symposium,, Wroclaw.
  • Kopeliovich, V.B., Piette, B. & Zakrzewski, W.J. (2006). Mass Terms in the Skyrme Model. Quark 2006, St' Petersbourg, Russia.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (2000). Nontopological structures in the baby-Skyrme model. Solitons, Properties, Dynamics, Interactions and Applications,, Springer.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1999). Skyrmions and Domain Walls. Properties, Dynamics, Interactions and Applications,, Springer.
  • Ioannidou, T., Piette, B.M.A.G. & Zakrzewski, W.J. (1999). SU(N) Skyrmions and two dimensional CPN Rational Maps. New symmetries and integrable models, Karpacz.
  • Ioannidou, T., Piette, B.M.A.G. & Zakrzewski, W.J. (1999). Three Dimensional Skyrmions and Harmonic Maps. Halifax.
  • Piette, B.M.A.G. & Zakrzewski, W.J (1997). Soliton-like structures in two dimensions and their properties.
  • Piette, B.M.A.G. & Zakrzewski, W.J. (1995). Scattering of extended structures in (2+1) dimensional models,. World Scientific.

Newspaper/Magazine Article

  • Delisle, L., Hussin, V. & Zakrzewski, W.J. (2013). Constant curvature solutions of Grassmannian sigma models: (1) Holomorphic solutions. Journal of Geometry and Physics 66: 24-36.
  • Stichel, P.C. & Zakrzewski, W.J. (2013). Nonstandard approach to gravity for the dark sector of the Universe. Entropy 15(2): 559-605.
  • Ferreira, L.A., Luchini, G. & Zakrzewski, W.J. (2013). The concept of quasi-integrability. AIP Conference Proceedings 1562: 43.
  • Adam, C., Sanchez-Guillen, J., Wereszczynski, A. & Zakrzewski, W.J. (2013). Topological duality between vortices and planar skyrmions in BPS theories with APD symmetries. P D 87: 027703.
  • Ferreira, L.A. & Zakrzewski, W.J. (2012). Attempts to define quasi-integrability. IJGMMP 6: 1261004.
  • Stichel, P.C. & Zakrzewski, W.J. (2012). Darkon fluid - a model for the dark sector of the Universe? IJGMMP 9: 1261014.
  • Ferreira, L.A., Luchini, G & Zakrzewski, W.J. (2012). The concept of quasi-integrability for modified non-linear Schr\"odinger models. JHEP 09: 103.
  • Ferreira, L.A., Klimas, P. & Zakrzewski, W.J. (2011). Properties of some (3+1) dimensional vortex solutions of the $CP^N$ model. Phys. Rev D 84: 085022.
  • Ferreira, L.J. & Zakrzewski, W.J. (2011). Some comments on quasi-integrability. Reports Math. Physics 67: 197.
  • Ferreira, L.A., Klimas, P. & Zakrzewski, W.J. (2011). Some properties of (3+1) dimensional vortex solutions in the extended $CP^N$ Skyrme Faddeev model. JHEP 1112: 098.
  • Al-Alawi, J.H. & Zakrzewski, W.J. (2009). Q-ball scattering on barriers and holes in 1 and 2 Spatial dimensions. Journal of Physics A 42: 245201.
  • Brizhik, L.S. Eremko, A.A. Piette, B.M.A.G. & Zakrzewski, W.J. (2008). Ratchet behaviour of polarons in molecular chains. Journal of Physics: Condensed Matter 20(25): 255242.

Show all publications