Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Mathematical Sciences

Seminar details

Analysis and/of PDE: Likely instabilities in liquid crystal elastomers

Presented by Angela Mihai, Cardiff

20 January 2021 12:00 in zoom

In this talk, I will present stochastic material models described by strain-energy densities where the parameters are characterised by probability distributions at a continuum level. To answer important questions, such as “what is the influence of probabilistic parameters on predicted mechanical responses?” and “what are the possible equilibrium states and how does their stability depend on the material constitutive law?”, I will focus on likely instabilities in nematic liquid crystal elastomers. I will discuss the soft elasticity phenomenon where, upon stretching at constant temperature, the homogeneous state becomes unstable and alternating shear stripes develop at very low stress, and also some classical effects inherited from the underlying polymeric network, such as necking, cavitation, and shell inflation instabilities. These fundamental problems are important in their own right and may stimulate related mechanical testing of nematic materials.

Contact megan.k.griffin-pickering@durham.ac.uk for more information