We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Arithmetic Study Group: Deformations of crossed product algebras and orbifolds

Presented by James Waldron, Newcastle University

17 November 2015 14:00 in CM219

Given a group G acting on a space X, one can construct the crossed product algebra G \ltimes C[X] of G with the algebra of functions on X. This generally noncommutative algebra can be seen as a replacement for the algebra of functions on the quotient X/G, which may be badly behaved.

I will speak about deformations of these algebras - both formal deformations (in the sense of Gerstenhaber) and strict deformations (in the sense of Rieffel). I will explain a general construction for producing such deformations and describe some examples. I will then explain how certain geometric and algebraic properties of these deformations are related to certain questions in representation theory, and to the geometry of the original action of G on X.

Contact for more information