Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Pure Maths Colloquium: Recognizing three-manifolds

Presented by Saul Schleimer, University of Warwick

12 January 2015 16:00 in CM221

Manifolds are very interesting topologically because they have no ``local'' properties: every point has a small neighborhood that looks like euclidean space. Accordingly, the classification of manifolds is one of the central problems in topology. The ``homeomorphism problem'' is a bit easier: given a pair of manifolds, we are asked to decide if they are homeomorphic.

These problems are solved for zero-, one-, and two-manifolds. Even better, the solutions are ``effective'': there are complete topological invariants that we can compute in polynomial time. In dimensions four and higher the homeomorphism problem is logically undecidable.

This leaves the provocative third dimension. Work of Haken, Rubenstein, Casson, Manning, Perelman, and others shows that these problems are decidable. Sometimes we can do better: for example, if one of the manifolds is the three-sphere then I showed that the homeomorphism problem lies in the complexity class NP. In joint work with Marc Lackenby, we showed that recognizing spherical space forms also lies in NP. If time permits we will discuss the standing of the other seven Thurston geometries.

Contact anna.felikson@durham.ac.uk for more information