We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Geometry and Topology Seminar: Orderable groups and Heegaard Floer homology

Presented by Mauro Mauricio, Renyi Institute, Budapest

17 October 2013 00:00 in CM221

One of the outstanding challenges in 3-manifold theory is to relate the modern Heegaard Floer invariants to the fundamental group. Recently, a conjectural picture has emerged from the work of Boyer-Gordon-Watson: a closed, irreducible rational homology sphere M is an L-space (i.e. it has the simplest possible Heegaard Floer homology) if and only if its fundamental group is not left-orderable. Whereas there has been encouraging evidence supporting the truth of the conjecture, the problem remains poorly understood for key classes of 3-manifolds.

In this talk, we focus on negative-definite graph manifolds (one of these poorly understood classes): for these, Nemethi constructs a lattice cohomology, an invariant inspired in ideas from singularity theory and conjecturally isomorphic to Heegaard Floer homology. Using the combinatorial tractability of lattice cohomology, we produce several comprehensive families of manifolds against which to test the Boyer-Gordon-Watson conjecture. Then, using either horizontal foliation arguments or direct manipulation of the fundamental group, we prove that they do indeed satisfy the conjecture.

Contact or or for more information