We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Statistics Seminars: Construction of confidence regions in the ROC space after the estimation of the optimal Youden index-based cut-off point

Presented by Christos Nakas, University of Thessaly

19 November 2012 14:00 in CM221

After establishing the utility of a continuous diagnostic marker investigators will typically address the question of determining a cut-off point which will be used for diagnostic purposes in clinical decision making. The most commonly used optimality criterion for cut-off point selection in the context of ROC curve analysis is the maximum of the Youden index. The pair of sensitivity and specificity proportions that correspond to the Youden index-based cut-off point characterize the performance of the diagnostic marker. Confidence intervals for sensitivity and specificity are routinely estimated based on the assumption that sensitivity and specificity are independent binomial proportions as they arise from the independent populations of diseased and healthy subjects respectively. However, the assumption of independence holds if the optimal cut-off point is given or is considered fixed. The Youden index-based cut-off point is estimated from the data and as such the resulting sensitivity and specificity proportions are in fact correlated. This correlation needs to be taken into account in order to calculate confidence intervals that result in the anticipated coverage. In this article we study parametric and non-parametric approaches for the construction of confidence intervals for the pair of sensitivity and specificity proportions that correspond to the Youden index-based optimal cut-off point. These approaches result in the anticipated coverage under different scenarios for the distributions of the healthy and diseased subjects as shown in an extensive simulation study. We illustrate our findings on data from two different studies of diagnostic marker assessment.

Contact for more information