We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Arithmetic Study Group: Cusp forms on GSp(4) with non-zero SO(4) periods

Presented by Martin Nikolov, University of Connecticut

26 May 2011 16:15 in CM219

Abstract: I will briefly explain the ideas behind the relative trace formula and outline a specific case of application. Namely: the Saito-Kurokawa lifting of automorphic representations from PGL(2) to the projective symplectic group of similitudes PGSp(4) of genus 2 established by the use of the relative trace formula, thus characterising the image as the representations with a nonzero period for the special orthogonal group SO(4,E/F) associated to a quadratic extension E of the base field F, and a nonzero Fourier coefficient for a generic character of the unipotent radical of the Siegel parabolic subgroup. The image is nongeneric and almost everywhere nontempered, violating a naive generalization of the Ramanujan conjecture.

Contact or for more information