We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Pure Maths Colloquium: Shining light on surfaces

Presented by Peter Giblin, Liverpool University

14 March 2011 17:15 in CM221

A smooth surface in 3-space viewed from a particular direction has an 'apparent contour' or 'profile' generated by points on the surface where the viewline grazes (is tangent to) the surface. As the view direction changes, the profile changes in general in a limited number of ways. When the surface is also illuminated from another direction there will be 'shade curves' where the light rays graze the surface, and perhaps cast shadows thrown by these shade curves elsewhere on the surface. The surface may also be piecewise-smooth, perhaps two smooth surfaces meeting along a common boundary, called a 'crease' or three surfaces meeting in a 'corner'. The various features, creases, shade curves, cast shadows, profiles, and perhaps others, interact in a limited number of ways as we change viewpoint. These ways can be found by methods of singularity theory, and I shall explain the connexion between the 'physical' problem and an abstract version of it amenable to singularity theory classification, and give examples to show how passing from 'abstract' to 'real' further limits the possibilities, as well as causing headaches for the classification process. I shall not assume knowledge of singularity theory. The work is
joint with Jim Damon and formerly with postdoc Gareth Haslinger.

Contact for more information