We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Statistics Seminars: Data compression and regression based on local principal curves and manifolds

Presented by Jochen Einbeck, Department of Mathematical Sciences, Durham University

14 April 2010 10:00 in Department of Mathematical Sciences, Durham University

We consider principal curves and surfaces in the context of multivariate regression modelling. For predictor spaces featuring complex dependency patterns between the involved variables, the intrinsic dimensionality of the data tends to be very small due to the high redundancy induced by the dependencies. In situations of this type, it is useful to approximate the high-dimensional predictor space through a low-dimensional manifold (i.e., a curve or a surface), and use the projections onto the manifold as compressed predictors in the regression problem. In the case that the intrinsic dimensionality of the predictor space equals one, we use the local principal curve algorithm for the the compression step. We provide a novel algorithm which extends this idea to local principal surfaces, thus covering cases of an intrinsic dimensionality equal to two, which is in principle extendible to manifolds of arbitrary dimension. The novel techniques are applied and motivated using data examples from the physical sciences. (joint work L. Evers, University of Glasgow) .

An event within the Lecture Day with Prof. Balakrishnan, more info available at

Contact or for more information