Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Centre for Particle Theory Colloquia: Calculating properties of materials from first principles

Presented by Stewart Clark, Durham University

16 March 2010 16:15 in CLC203


With recent theoretical and computational advances we have
been able to calculate the properties of condensed matter systems from
first principles. The first-principles approach is vastly ambitious
because its goal is to model real systems using no approximations
whatsoever. That one can even hope to do this is down to the accuracy of
quantum mechanics in describing the chemical bond. Dirac's apocryphal
quip that after the discovery of quantum mechanics the rest is chemistry
sums it up: if one can solve the Schrodinger equation for something an
atom, a molecule, assemblies of atoms in solids or liquids one can
predict every physical property. Dirac's statement doesn't quite show
how difficult doing the rest is, and it has taken great effort and
ingenuity to take us to the point of calculating some of the properties
of materials with reasonable accuracy. The impact of simulations on our
thinking about condensed matter problems is immense. Here I shall
concentrate on just a few elements of what is a very large subject.
First I shall discuss the first-principles rationale and what makes the
task so difficult. I shall focus on one of the most successful
approaches, the application of density-functional theory and consider
why this method turned out to be so important. I shall also spend some
time discussing the simulation approach in general, and the types of
information that come out of a calculation. To illustrate the usefulness
of some of the methods I shall present highlights of a number of
simulations to indicate the wide applicability of the method.

Contact marija.zamaklar@durham.ac.uk for more information

Coffee and biscuits at 15:30 in CM 211 (Maths Coffee Room).