Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Mathematical Sciences

Seminar Archives

On this page you can find information about seminars in this and previous academic years, where available on the database.

Statistics Seminars: Strict convexity of the surface tension of Gradient models with non-convex interactions

Presented by Stefan Adams, University of Warwick

8 May 2009 16:15 in CM221

Recently the study of gradients fields has attained a lot of attention because they are space-time analogy of Brownian motions, and are connected to the Schramm-Lowener evolution. The corresponding discrete versions arise in equilibrium statistical mechanics, e.g., as approximations of critical systems and as effective interface models. The latter models - seen as gradient fields - enable one to study effective descriptions of phase coexistence.

In the probabilistic setting gradient fields involve the study of strongly correlated random variables. One major problem has been open for several decades. What can be proved for the free energy and the Gibbs states for non-convex interactions given a non-vanishing tilt at the boundary? We present in the talk the first break through for low temperature using Gaussian measures and renormalisation group techniques yielding an analysis in terms of dynamical systems. We outline also the connection to the Cauchy-Born rule which states that the deformation on the atomistic level is locally given by an affine deformation at the boundary.

Work in cooperation with R. Kotecky and S. Mueller.

Contact sunil.chhita@durham.ac.uk for more information