Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Geography

Departmental Research Projects

Publication details

Sutherland, Jenna L., Carrivick, Jonathan L., Evans, David J.A., Shulmeister, James & Quincey, Duncan J. The Tekapo Glacier, New Zealand, during the Last Glacial Maximum: An active temperate glacier influenced by intermittent surge activity. Geomorphology. 2019;343:183-210.

Author(s) from Durham

Abstract

Quaternary glaciations have created impressive landform assemblages that can be used to understand palaeo-glacier extent, character and behaviour, and hence past global and local glacier forcings. However, in the southern hemisphere and especially in New Zealand, the Quaternary glacial landform record is relatively poorly investigated with regard to glaciological properties. In this study, a 1 m digital elevation model (DEM) was generated from airborne LiDAR data and supplemented with aerial imagery and field observations to analyse the exceptionally well-preserved glacial geomorphology surrounding Lake Tekapo, New Zealand. We describe a rich suite of Last Glacial Maximum (LGM) and recessional ice-marginal, subglacial, supraglacial, glaciofluvial and glaciolacustrine landform assemblages. These represent two landsystems comprising i) fluted till surfaces with low-relief push moraine ridges; and ii) crevasse-squeeze ridges, ‘zig-zag’ eskers and attenuated lineations. The former landsystem records the behaviour of an active temperate glacier and the latter landsystem, which is superimposed upon and inset within the former, strongly suggests intermittent surge phases. The two landsystem signatures indicate a sequential change in ice-marginal dynamics during recession that was likely to have been partially non-climatically driven. Overall, we present the first evidence of surge-type glacier behaviour in New Zealand.

Department of Geography