We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Geography

Departmental Research Projects

Publication details

Westaway, R., Bridgland, D.R., Sinha, R. & Demir, T. Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic a synthesis of data from IGCP 518. Global and Planetary Change. 2009;68:237–253.

Author(s) from Durham


This editorial synthesis introduces a collection of papers derived from International Geoscience Programme (IGCP) Project 518, entitled ‘Fluvial Sequences as Evidence for Landscape and Climatic Evolution in the Late Cenozoic’. Building on information collected during an earlier project (IGCP 449: ‘Global Correlation of Late Cenozoic Fluvial Deposits’), this has examined the data accumulated on fluvial records, particularly river
terrace sequences, for patterns that contribute to the interpretation of Late Cenozoic landscape and climatic evolution. This introductory paper reviews the baseline evidence, noting that there are patterns (from terrace sequences in different regions) of differing amounts of fluvial incision, indicating differing uplift rates, that appear to be related to crustal province. There seems to be no general role for plate tectonics; instead the
patterns are of regional uplift, probably an isostatic response to erosion, enhanced by positive feedback effects, arguably due to lower-crustal flow. As well as depocentres, which are subsiding due to loading by accumulating sediment, cratonic areas are also exceptions to the rule of widespread uplift; these show minimal Late Cenozoic uplift, presumably because they lack mobile lower crust. The ten papers that follow are reviewed briefly in this context, these being contributions concerning Turkey, the Black Sea margin of Ukraine, Morocco (×2), the Czech Republic, Britain (×2), the Netherlands, New Zealand, and China.

Department of Geography