Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Geography

Departmental Research Projects

Publication details

Demir, Tuncer, Westaway, Rob & Bridgland, David The Influence of Crustal Properties on Patterns of Quaternary Fluvial Stratigraphy in Eurasia. Quaternary. 2018;1:28.

Author(s) from Durham

Abstract

Compilation of empirical data on river-terrace sequences from across Eurasia during successive International Geoscience Programme (IGCP) projects revealed marked contrasts between the records from different crustal provinces, notably between the East European Platform (EEP) and the Caledonian/Variscan/Alpine provinces of western/central Europe. Well-developed terrace staircases, often indicative of hundreds of metres of Late Cenozoic uplift/fluvial incision, are preserved in many parts of the European continent, especially westward of the EEP. In contrast, rivers within the EEP have extensive sedimentary archives that are not preserved as terrace staircases; instead, they form sets of laterally accreted sediment packages, never more than a few tens of metres above or below modern river level. There are parallels in Asia, albeit that the crust of the Asian continent has a greater proportion of tectonically active zones, at one extreme, and stable platforms/cratons at the other. The observed patterns point strongly to the mobility of lower-crustal material within younger provinces, where the continental crust is significantly hotter, as a key part of the mechanism driving the progressive uplift that has led to valley incision and the formation of river terraces: a process of erosional isostasy with lower-crustal flow as a positive-feedback driver. The contrast between these different styles of fluvial-archive preservation is of considerable significance for Quaternary stratigraphy, as such archives provide important templates for the understanding of the terrestrial record.

Department of Geography