Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science

Profile

Publication details for Dr Ioannis Ivrissimtzis

Yoon, Mincheol & Ivrissimtzis, Ioannis (2008). Point Set Denoising using a Variational Bayesian Method. Journal of KISS:Computing Practices and Letters 14(5): 527-531.

Author(s) from Durham

Abstract

For statistical modeling, the model parameters are usually estimated by maximizing a probability measure, such as the likelihood or the posterior. In contrast, a variational Bayesian method threats the parameters of the model as probability distributions and computes optimal distributions for them rather than values. It has been shown that this approach effectively avoids the overfitting problem, which is common with other parameter optimization methods. This paper applies a variational Bayesian technique to surface fitting for height field data. Then, we propose point cloud denoising based on the basic surface fitting technique. Validation experiments and further tests with scan data verify the robustness of the proposed method.