We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science


Publication details for Professor Matthew Johnson

Cereceda, Luis, van den Heuvel, Jan & Johnson, Matthew (2009). Mixing 3-colourings in bipartite graphs. European Journal of Combinatorics 30(7): 1593-1606.

Author(s) from Durham


For a 3-colourable graph G, the 3-colour graph of G, denoted C_3(G), is the graph with node set the proper vertex 3-colourings of G, and two nodes adjacent whenever the corresponding colourings differ on precisely one vertex of G. We consider the following question: given G, how easily can one decide whether or not C_3(G) is connected? We show that the 3-colour graph of a 3-chromatic graph is never connected, and characterise the bipartite graphs for which View the MathML source is connected. We also show that the problem of deciding the connectedness of the 3-colour graph of a bipartite graph is coNP-complete, but that restricted to planar bipartite graphs, the question is answerable in polynomial time.