Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science

Profile

Publication details for Professor Matthew Johnson

Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M. & Paulusma, D. (2018). Independent feedback vertex sets for graphs of bounded diameter. Information Processing Letters 131: 26-32.

Author(s) from Durham

Abstract

The Near-Bipartiteness problem is that of deciding whether or not the vertices of a graph can be partitioned into sets A and B, where A is an independent set and B induces a forest. The set A in such a partition is said to be an independent feedback vertex set. Yang and Yuan proved that Near-Bipartiteness is polynomial-time solvable for graphs of diameter 2 and NP-complete for graphs of diameter 4. We show that Near-Bipartiteness is NP-complete for graphs of diameter 3, resolving their open problem. We also generalise their result for diameter 2 by proving that even the problem of computing a minimum independent feedback vertex is polynomial-time solvable for graphs of diameter 2.