We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science


Publication details for Professor Toby Breckon

Katramados, I. & Breckon, T.P. (2016), Dense Gradient-based Features (DeGraF) for Computationally Efficient and Invariant Feature Extraction in Real-time Applications, 2016 IEEE International Conference on Image Processing. Phoenix, AZ, USA, IEEE, Piscataway, NJ, 300-304.

Author(s) from Durham


We propose a computationally efficient approach for the extraction of dense gradient-based features based on the use of localized intensity-weighted centroids within the image. Whilst prior work concentrates on sparse feature derivations or computationally expensive dense scene sensing, we show that Dense Gradient-based Features (DeGraF) can be derived based on initial multi-scale division of Gaussian preprocessing, weighted centroid gradient calculation and either local saliency (DeGraF-α) or signal-to-noise inspired (DeGraF-β) final stage filtering. We present two variants (DeGraF-α / DeGraF-β) of which the signal-to-noise based approach is shown to perform admirably against the state of the art in terms of feature density, computational efficiency and feature stability. Our approach is evaluated under a range of environmental conditions typical of automotive sensing applications with strong feature density requirements.