Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science

Profile

Publication details for Professor Iain Stewart

Arratia, A.A. & Stewart, I.A. (2003). A note on first-order projections and games. Theoretical Computer Science 290(3): 2085-2093.

Author(s) from Durham

Abstract

We show how the fact that there is a first-order projection from the problem TC (transitive closure) to some other problem $\Omega$ enables us to automatically deduce that a natural game problem, $\mathcal{LG}(\Omega)$, whose instances are labelled instances of $\Omega$, is complete for PSPACE (via log-space reductions). Our analysis is strongly dependent upon the reduction from TC to $\Omega$ being a logical projection in that it fails should the reduction be, for example, a log-space reduction or a quantifier-free first-order translation.