We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science


Publication details for Professor Iain Stewart

Erickson, A., Kiasari, A.E., Navaridas, J. & Stewart, I.A. (2016). An Optimal Single-Path Routing Algorithm in the Datacenter Network DPillar. IEEE Transactions on Parallel and Distributed Systems 28(3): 689-703.

Author(s) from Durham


DPillar has recently been proposed as a server-centric datacenter network and is combinatorially related to (but distinct from) the well-known wrapped butterfly network. We explain the relationship between DPillar and the wrapped butterfly network before proving that the underlying graph of DPillar is a Cayley graph; hence, the datacenter network DPillar is node-symmetric. We use this symmetry property to establish a single-path routing algorithm for DPillar that computes a shortest path and has time complexity O(k), where k parameterizes the dimension of DPillar (we refer to the number of ports in its switches as n). Our analysis also enables us to calculate the diameter of DPillar exactly. Moreover, our algorithm is trivial to implement, being essentially a conditional clause of numeric tests, and improves significantly upon a routing algorithm earlier employed for DPillar. Furthermore, we provide empirical data in order to demonstrate this improvement. In particular, we empirically show that our routing algorithm improves the average length of paths found, the aggregate bottleneck throughput, and the communication latency. A secondary, yet important, effect of our work is that it emphasises that datacenter networks are amenable to a closer combinatorial scrutiny that can significantly improve their computational efficiency and performance.