We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science


Publication details for Dr Maximilien Gadouleau

Cameron, Peter J., Gadouleau, Maximilien & Riis, Søren (2013). Combinatorial Representations. Journal of Combinatorial Theory, Series A 120(3): 671-682.

Author(s) from Durham


This paper introduces combinatorial representations, which generalise the notion of linear representations of matroids. We show that any family of subsets of the same cardinality has a combinatorial representation via matrices. We then prove that any graph is representable over all alphabets of size larger than some number depending on the graph. We also provide a characterisation of families representable over a given alphabet. Then, we associate a rank function and a closure operator to any representation which help us determine some criteria for the functions used in a representation. While linearly representable matroids can be viewed as having representations via matrices with only one row, we conclude this paper by an investigation of representations via matrices with only two rows.