Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Computer Science

Profile

Publication details for Dr Maximilien Gadouleau

Gadouleau, Maximilien & Yan, Zhiyuan (2010). Constant-Rank Codes and Their Connection to Constant-Dimension Codes. IEEE Transactions on Information Theory 56(7): 3207-3216.

Author(s) from Durham

Abstract

Constant-dimension codes have recently received attention due to their significance to error control in noncoherent random linear network coding. What the maximal cardinality of any constant-dimension code with finite dimension and minimum distance is and how to construct the optimal constant-dimension code (or codes) that achieves the maximal cardinality both remain open research problems. In this paper, we introduce a new approach to solving these two problems. We first establish a connection between constant-rank codes and constant-dimension codes. Via this connection, we show that optimal constant-dimension codes correspond to optimal constant-rank codes over matrices with sufficiently many rows. As such, the two aforementioned problems are equivalent to determining the maximum cardinality of constant-rank codes and to constructing optimal constant-rank codes, respectively. To this end, we then derive bounds on the maximum cardinality of a constant-rank code with a given minimum rank distance, propose explicit constructions of optimal or asymptotically optimal constant-rank codes, and establish asymptotic bounds on the maximum rate of a constant-rank code.