We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Archaeology

Research Postgraduates

Publication details for Professor Janet Montgomery

Al-Mosawi,Mohammed Davis, Graham Roy Bushby, Andy Montgomery, Janet , Beaumont, Julia & Al-Jawad, Maisoon (2018). Crystallographic texture and mineral concentration quantification of developing and mature human incisal enamel. Nature Scientific Reports 8: 14449.

Author(s) from Durham


For human dental enamel, what is the precise mineralization progression spatially and the precise timing of mineralization? This is an important question in the fundamental understanding of matrix-mediated biomineralization events, but in particular because we can use our understanding of this natural tissue growth in humans to develop biomimetic approaches to repair and replace lost enamel tissue. It is important to understand human tissues in particular since different species have quite distinct spatial and temporal progression of mineralization. In this study, five human central incisors at different stages of enamel maturation/mineralization were spatially mapped using synchrotron X-ray diffraction and X-ray microtomography techniques. From the earliest developmental stage, two crystallite-orientation populations coexist with angular separations between the crystallite populations of approximately 40° varying as a function of position within the tooth crown. In general, one population had significantly lower texture magnitude and contributed a higher percentage to the overall crystalline structure, compared to the other population which contributed only 20–30% but had significantly higher texture magnitude. This quantitative analysis allows us to understand the complex and co-operative structure-function relationship between two populations of crystallites within human enamel. There was an increase in the mineral concentration from the enamel-dentin junction peripherally and from the incisal tip cervically as a function of maturation time. Quantitative backscattered-electron analyses showed that mineralization of prism cores precedes that of prism boundaries. These results provide new insights into the precise understanding of the natural growth of human enamel.