We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Anthropology


Publication details for Professor Russell Hill

Coleman, B.T. & Hill, R.A. (2014). Living in a landscape of fear: the impact of predation, resource availability and habitat structure on primate range use. Animal Behaviour 88: 165-173.

Author(s) from Durham


Spatial variation in predation risk generates a ‘landscape of fear’, with prey animals modifying their distribution and behaviour in response to this variable predation risk. In systems comprising multiple predators and prey species, a key challenge is distinguishing the independent effects of different predator guilds on prey responses. We exploited the acoustically distinct alarm calls of samango monkeys, Cercopithecus mitis erythrarchus, to create a predator-specific landscape of fear from eagles to assess its impact on space use within mixed regressive–spatial regressive models incorporating data on resource distribution and structural characteristics of the environment. The landscape of fear from eagles was the most significant determinant of samango range use, with no effect of resource availability. The monkeys also selected areas of their range with higher canopies and higher understory visibility, behaviour consistent with further minimizing risk of predation. These results contrast with those of vervet monkeys, Chlorocebus aethiops pygerythrus, at the same site for which the landscapes of fear from leopards and baboons were the most significant determinants of space use. While highlighting that predation risk is a key driver of primate behaviour in this population, the landscapes of fear experienced by samango monkeys and vervet monkeys appear to differ despite exposure to identical predator guilds. This emphasizes the importance of distinguishing between the risk effects of different predators in understanding prey ecology, but also that closely related prey species may respond to these predator-specific risks in different ways.