Staff profile
Overview
https://www.maths.dur.ac.uk/users/ostap.hryniv/.pictures/stoprussia2.png
Ostap Hryniv
Associate Professor, Probability
PhD Moscow State University

Affiliation | Room number | Telephone |
---|---|---|
Associate Professor, Probability in the Department of Mathematical Sciences | MCS2085 | +44 (0) 191 33 43053 |
Research interests
- probability and stochastic processes
- phase transitions
- interacting particle systems
- large deviations
Research groups
- Probability
Publications
Conference Paper
Journal Article
- Chernousova, Elena, Hryniv, Ostap & Molchanov, Stanislav (2023). Branching random walk in a random time-independent environment. Mathematical Population Studies 30(2): 73-94.
- Chernousova, E, Feng, Y, Hryniv, O, Molchanov, S & Whitmeyer, J (2021). Steady states of lattice population models with immigration. Mathematical Population Studies 28(2): 63-80.
- Chernousova, Elena, Hryniv, Ostap & Molchanov, Stanislav (2020). Population model with immigration in continuous space. Mathematical Population Studies 27(4): 199-215.
- Hryniv, Ostap & Martínez Esteban, Antonio (2017). Stochastic Model of Microtubule Dynamics. Journal of Statistical Physics 169(1): 203-222.
- Hryniv, Ostap, Menshikov, Mikhail V. & Wade, Andrew R. (2013). Random walk in mixed random environment without uniform ellipticity. Proceedings of the Steklov Institute of Mathematics 282(1): 106-123.
- Hryniv, Ostap, Menshikov, Mikhail V. & Wade, Andrew R. (2013). Excursions and path functionals for stochastic processes with asymptotically zero drifts. Stochastic Processes and their Applications 123(6): 1891-1921.
- Hryniv, Ostap, MacPhee, Iain M. Menshikov, Mikhail V. & Wade, Andrew R. (2012). Non-homogeneous random walks with non-integrable increments and heavy-tailed random walks on strips. Electronic Journal of Probability 17: 59, 1-28.
- Hryniv, Ostap (2012). Regular phase in a model of microtubule growth. Markov Processes and Related Fields 18(2): 177-200.
- Hryniv, O. & Menshikov, M. (2010). Long-time behaviour in a model of microtubule growth. Advances in Applied Probability 42(1): 268–291.
- Hryniv, O. & Velenik, Y. (2009). Some rigorous results on semiflexible polymers, I: Free and confined polymers. Stochastic Processes and their Applications 119(10): 3081-3100.
- Cranston, M., Hryniv, O. & Molchanov, S. (2009). Homo- and Hetero-Polymers in the Mean-Field Approximation. Markov Processes and Related Fields 15(2): 205-224.
- Bovier, Anton, Cerny, Jiri & Hryniv, Ostap (2006). The Opinion Game: Stock price evolution from microscopic market modelling. International Journal of Theoretical and Applied Finance 9(1): 91--111.
- Hryniv, O. & Velenik, Y. (2004). Universality of critical behaviour in a class of recurrent random walks. Probability Theory and Related Fields 130(2): 222-258.
- Hryniv, O. & Ioffe, D. (2004). Self-avoiding polygons: sharp asymptotics of canonical partition functions under the fixed area constraint. Markov Processes and Related Fields 10(1): 1-64.
- Ben Arous, G. Hryniv, O. & Molchanov, S. (2002). Phase transition for the spherical hierarchical model. Markov Processes and Related Fields 8(4): 565-594.
- Hryniv, Ostap & Kotecký, Roman (2002). Surface tension and the Ornstein-Zernike behaviour for the 2D Blume-Capel model. Journal of Statististical Physics 106(3-4): 431-476.
- Hryniv, Ostap (1998). On conditional invariance principle for random walks. Mat. Stud 9(1): 102-109, 112.
- Hryniv, Ostap (1998). On local behaviour of the phase separation line in the 2D Ising model. Probability Theory and Related Fields 110(1): 91-107.
- Dobrushin, R. & Hryniv, O. (1997). Fluctuations of the phase boundary in the 2D Ising ferromagnet. Communications in Mathematical Physics 189(2): 395-445.
- Dobrushin, R. & Hryniv, O. (1996). Fluctuations of shapes of large areas under paths of random walks. Probability Theory and Related Fields 105(4): 423-458.
- Hryniv, O. O. & Dobrushin, R. L. (1995). On fluctuations of the Wulff shape in the two-dimensional Ising model. Uspekhi Matematicheskikh Nauk 50(6(306): 177-178.
- Hryniv, O. O. (1991). A central limit theorem for the Burgers equation. Teoreticheskaya i Matematicheskaya Fizika 88(1): 7-13.