Staff profile
Overview
Gabriel Fuhrmann
Assistant Professor, Analysis
PhD Friedrich Schiller Universitat Jena

Affiliation | Room number | Telephone |
---|---|---|
Assistant Professor, Analysis in the Department of Mathematical Sciences | MCS3059 | +44 (0) 191 33 42738 |
Research groups
- Pure Mathematics: Analysis
Publications
Journal Article
- Fuhrmann, G., Kellendonk, J. & Yassawi, R. (Submitted). Tame or wild Toeplitz shifts.
- Fuhrmann, Gabriel, Gröger, Maik & Hauser, Till (2023). On the continuity of Følner averages.
- Fuhrmann, G., Gröger, M., Jäger, T. & Kwietniak, D. (2023). Amorphic complexity of group actions with applications to quasicrystals.
- Remo, F., Fuhrmann, G. & Jäger, T. (2022). On the effect of forcing of fold bifurcations and early-warning signals in population dynamics. Nonlinearity 35(12): 6485-6527.
- Fuhrmann, Gabriel, Gröger, Maik & Lenz, Daniel (2022). The structure of mean equicontinuous group actions. Israel Journal of Mathematics 247: 75-123.
- Remo, Flavia, Fuhrmann, Gabriel & Jäger, Tobias (2022). On the probability of positive finite-time Lyapunov exponents on strange non-chaotic attractors.
- Fuhrmann, Gabriel, Gröger, Maik & Passeggi, Alejandro (2021). The bifurcation set as a topological invariant for one-dimensional dynamics. Nonlinearity 34(3): 1366.
- Fuhrmann, G., Glasner, E., Jäger, T. & Oertel, C. (2021). Irregular model sets and tame dynamics. Transactions of the American Mathematical Society 374(5): 3703.
- Fuhrmann, Gabriel & Gröger, Maik (2020). Constant length substitutions, iterated function systems and amorphic complexity. Mathematische Zeitschrift 295(3-4): 1385.
- Fuhrmann, Gabriel & Kwietniak, Dominik (2020). On tameness of almost automorphic dynamical systems for general groups. Bulletin of the London Mathematical Society 52(1): 24.
- Fuhrmann, G., Gröger, M. & Jäger, T. (2018). Non-smooth saddle-node bifurcations II: Dimensions of strange attractors. Ergodic Theory and Dynamical Systems 38(8): 2989.
- Fuhrmann, Gabriel & Wang, Jing (2017). Rectifiability of a class of invariant measures with one non-vanishing Lyapunov exponent. Discrete & Continuous Dynamical Systems - A 37(11): 5747.
- Fuhrmann, Gabriel (2016). Non-smooth saddle-node bifurcations I: existence of an SNA. Ergodic Theory and Dynamical Systems 36(4): 1130.
- Fuhrmann, G, Gröger, M & Jäger, T (2016). Amorphic complexity. Nonlinearity 29(2): 528.
- Fuhrmann, G. (2016). Non-smooth saddle-node bifurcations III: Strange attractors in continuous time. Journal of Differential Equations 261(3): 2109.