We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Dr Aidan Hindmarch

Ganguly, A., Rowan-Robinson, R.M., Haldar, A., Jaiswal, S., Sinha, J., Hindmarch, A.T., Atkinson, D. & Barman, A. (2014). Time-Domain Detection of Current Controlled Magnetization Damping in Pt/Ni81Fe19 Bilayers and Determination of Pt Spin Hall Angle. Applied Physics Letters 105(11): 112409.

Author(s) from Durham


The effect of spin torque from the spin Hall effect in Pt/Ni81Fe19 rectangular bilayer film was investigated using time-resolved magneto-optical Kerr microscopy. Current flow through the stack resulted in a linear variation of effective damping up to ±7%, attributed to spin current injection from the Pt into the Ni 81Fe19. The spin Hall angle of Pt was estimated as 0.11 ± 0.03. The modulation of the damping depended on the angle between the current and the bias magnetic field. These results demonstrate the importance of optical detection of precessional magnetization dynamics for studying spin transfer torque due to spin Hall effect.