We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Physics

Staff profile

Publication details for Prof Tom McLeish

Auhl, D., Hoyle, David M., Hassell, D., Lord, T.D., Mackley, M.R., Harlen, O.G. & McLeish, T.C.B. (2011). Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts. Journal of Rheology 55(4): 875-900.

Author(s) from Durham


Stress-optical measurements at a flow stagnation point in confined geometries such as the cross-slot provide an elegant way to perform extensional testing for polymer melts. This technique is especially useful for samples which have a steady-state that cannot be reached (easily) in standard elongational rheometry, for example, highly branched polymers which show a non-homogeneous deformation that occurs in stretching experiments for Hencky strains above 4. In contrast to filament stretching, the cross-slot provides one point at which steady-state extensional flow may be sustained indefinitely. In this study, a Cambridge multi-pass rheometer [ Coventry, K. D., and M. R. Mackley, J. Rheol. 52, 401–415 (2008) ] is used to generate planar elongational flow in a cross-slot geometry for different polyethylene melts. The experimental results are compared to finite element flow simulations using the multi-mode Pompom constitutive equations. The steady-state elongational viscosity at the stagnation point is computed from the flow-induced stress birefringence and the strain-rate determined from numerical calculations of the flow field. We apply this technique to a range of different branched high- and low-density polyethylene melts. This demonstrates both the effectiveness of this technique and shows how the stress distribution in a complex flow depends on molecular structure. Cross slot extensional rheometry therefore provides a very promising technique for parameterizing molecular constitutive equations for LCB melts.