We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Professor Ian Smail

Rowlands, K., Dunne, L., Dye, S., Aragón-Salamanca, A., Maddox, S., da Cunha, E., Smith, D.J.B., Bourne, N., Eales, S., Gomez, H.L., Smail, I., Alpaslan, M., Clark, C.J.R., Driver, S., Ibar, E., Ivison, R.J., Robotham, A., Smith, M.W.L. & Valiante, E. (2014). Herschel-ATLAS: properties of dusty massive galaxies at low and high redshifts. Monthly Notices of the Royal Astronomical Society 441(2): 1017-1039.

Author(s) from Durham


We present a comparison of the physical properties of a rest-frame 250-μm-selected sample of massive, dusty galaxies from 0 < z < 5.3. Our sample comprises 29 high-redshift submillimetre galaxies (SMGs) from the literature and 843 dusty galaxies at z < 0.5 from the Herschel-Astrophysical TeraHertz Large Area Survey (H-ATLAS), selected to have a similar stellar mass to the SMGs. The z > 1 SMGs have an average star formation rate (SFR) of 390+80−70 M⊙ yr−1, which is 120 times that of the low-redshift sample matched in stellar mass to the SMGs (SFR = 3.3 ± 0.2 M⊙ yr−1). The SMGs harbour a substantial mass of dust (1.2+0.3−0.2×109 M⊙), compared to (1.6 ± 0.1) × 108  M⊙ for low-redshift dusty galaxies. At low redshifts, the dust luminosity is dominated by the diffuse interstellar medium, whereas a large fraction of the dust luminosity in SMGs originates from star-forming regions. At the same dust mass, SMGs are offset towards a higher SFR compared to the low-redshift H-ATLAS galaxies. This is not only due to the higher gas fraction in SMGs but also because they are undergoing a more efficient mode of star formation, which is consistent with their bursty star formation histories. The offset in SFR between SMGs and low-redshift galaxies is similar to that found in CO studies, suggesting that dust mass is as good a tracer of molecular gas as CO.