Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Professor Ian Smail

Geach, J.E., Smail, I., Ellis, R.S., Moran, S.M., Smith, G.P., Treu, T., Kneib, J.P., Edge, A.C. & Kodama, T. (2006). A panoramic mid-infrared survey of two distant clusters. The Astrophysical Journal 649(2): 661-672.

Author(s) from Durham

Abstract

We present panoramic Spitzer MIPS 24 μm observations, covering ~9 × 9 Mpc2 (25' × 25') fields around two massive clusters, Cl 0024+16 and MS 0451-03, at z = 0.39 and z = 0.55, respectively, reaching a 5 σ flux limit of ~200 μJy. Our observations cover a very wide range of environments within these clusters, from high-density regions around the cores out to the turnaround radius. Cross-correlating the mid-infrared catalogs with deep optical and near-infrared imaging of these fields, we investigate the optical/near-infrared colors of the mid-infrared sources. We find excesses of mid-infrared sources with the optical/near-infrared colors expected of cluster members in the two clusters and test this selection using spectroscopically confirmed 24 μm members. The much more significant excess is associated with Cl 0024+16, whereas MS 0451-03 has comparatively few mid-infrared sources. The mid-infrared galaxy population in Cl 0024+16 appears to be associated with dusty star-forming galaxies (typically redder than the general cluster population by up to AV ~ 1-2 mag) rather than emission from dusty tori around active galactic nuclei in early-type hosts. We compare the star formation rates derived from the total infrared (8-1000 μm) luminosities for the mid-infrared sources in Cl 0024+16 with those estimated from a published Hα survey, finding rates 5 times those found from Hα, indicating significant obscured activity in the cluster population. Compared to previous mid-infrared surveys of clusters from z ~ 0-0.5, we find evidence for strong evolution of the level of dust-obscured star formation in dense environments to z = 0.5, analogous to the rise in the fraction of optically selected star-forming galaxies seen in clusters and the field out to similar redshifts. However, there are clearly significant cluster-to-cluster variations in the populations of mid-infrared sources, probably reflecting differences in the intracluster media and recent dynamical evolution of these systems.