# Staff profile

## Publication details for Valentin [Valya] Khoze

**Georgiou, G.**,

**Glover, E. W. N.**&

**Khoze, V. V.**(2004). Non-MHV tree amplitudes in gauge theory.

*Journal of High Energy Physics*

**2004**(07): 048.

- Publication type: Journal Article
- ISSN/ISBN: 1126-6708, 1029-8479
- DOI: 10.1088/1126-6708/2004/07/048
- Keywords: Duality in gauge field theories, Supersymmetry, Duality, QCD, NLO computations.
- Further publication details on publisher web site
- Durham Research Online (DRO) - may include full text

### Author(s) from Durham

### Abstract

We show how all non-MHV tree-level amplitudes in 0 ≤ ≤ 4 gauge theories can be obtained directly from the known MHV amplitudes using the scalar graph approach of Cachazo, Svrcek and Witten. Generic amplitudes are given by sums of inequivalent scalar diagrams with MHV vertices. The novel feature of our method is that after the `Feynman rules' for scalar diagrams are used, together with a particular choice of the reference spinor, no further helicity-spinor algebra is required to convert the results into a numerically usable form. Expressions for all relevant individual diagrams are free of singularities at generic phase space points, and amplitudes are manifestly Lorentz- (and gauge-) invariant. To illustrate the method, we derive expressions for n-point amplitudes with three negative helicities carried by fermions and/or gluons. We also write down a supersymmetric expression based on Nair's supervertex which gives rise to all such amplitudes in 0 ≤ ≤ 4 gauge theories.

### References

### 1

F. Cachazo, P. Svrcek and E. Witten, MHV vertices and tree amplitudes in gauge theory,

hep-th/0403047.

### 2

E. Witten, Perturbative gauge theory as a string theory in twistor space, hep-th/0312171.

### 3

G. Georgiou and V.V. Khoze, Tree amplitudes in gauge theory as scalar MHV diagrams, J.

High Energy Phys. 05 (2004) 070 [hep-th/0404072].

### 4

C.-J. Zhu, The googly amplitudes in gauge theory, J. High Energy Phys. 04 (2004) 032

### hep-th/0403115

;

J.-B. Wu and C.-J. Zhu, MHV vertices and scattering amplitudes in gauge theory, J. High

Energy Phys. 07 (2004) 032 [hep-th/0406085].

### 5

I. Bena, Z. Bern and D.A. Kosower, Twistor-space recursive formulation of gauge theory

amplitudes, hep-th/0406133.

### 6

D.A. Kosower, Next-to-maximal helicity violating amplitudes in gauge theory,

hep-th/0406175.

### 7

F. Cachazo, P. Svrcek and E. Witten, Twistor space structure of one-loop amplitudes in

gauge theory, hep-th/0406177.

### 8

N. Berkovits, An alternative string theory in twistor space for N = 4 super{Yang-Mills, Phys.

Rev. Lett. 93 (2004) 011601 [hep-th/0402045];

N. Berkovits and L. Motl, Cubic twistorial string ¯eld theory, J. High Energy Phys. 04 (2004)

056 [hep-th/0403187].

### 9

R. Roiban, M. Spradlin and A. Volovich, A googly amplitude from the b-model in twistor

space, J. High Energy Phys. 04 (2004) 012 [hep-th/0402016];

R. Roiban, M. Spradlin and A. Volovich, On the tree-level S-matrix of Yang-Mills theory,

Phys. Rev. D 70 (2004) 026009 [hep-th/0403190].

### 10

A. Neitzke and C. Vafa, N = 2 strings and the twistorial Calabi-Yau, hep-th/0402128;

N. Nekrasov, H. Ooguri and C. Vafa, S-duality and topological strings, hep-th/0403167.

### 11

E. Witten, Parity invariance for strings in twistor space, hep-th/0403199.

### 12

S. Gukov, L. Motl and A. Neitzke, Equivalence of twistor prescriptions for super Yang-Mills,

hep-th/0404085.

### 13

W. Siegel, Untwisting the twistor superstring, hep-th/0404255.

### 14

S. Giombi, R. Ricci, D. Robles-Llana and D. Trancanelli, A note on twistor gravity

amplitudes, hep-th/0405086.

### 15

A.D. Popov and C. Saemann, On supertwistors, the Penrose-Ward transform and N = 4

super Yang-Mills theory, hep-th/0405123.

### 16

N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory,

hep-th/0406051.

### 17

V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215.

### 18

M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the s matrix,

Phys. Rev. D 15 (1977) 996;

M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in

supersymmetric theories, Nucl. Phys. B 124 (1977) 81.

### 19

S.J. Parke and T.R. Taylor, An amplitude for N gluon scattering, Phys. Rev. Lett. 56 (1986)

2459.

### 20

F.A. Berends and W.T. Giele, Recursive calculations for processes with N gluons, Nucl. Phys.

B 306 (1988) 759.

### 21

F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single

bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124;

P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple bremsstrahlung in gauge

theories at high-energies, 1. General formalism for quantum electrodynamics, Nucl. Phys. B

206 (1982) 53;

R. Kleiss and W.J. Stirling, Spinor techniques for calculating p¹p ! W§=Z0+ jets, Nucl.

Phys. B 262 (1985) 235;

J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and the

ggq¹q lepton anti-lepton subprocess, Phys. Lett. B 161 (1985) 333.

### 22

M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200

(1991) 301.

### 23

L.J. Dixon, Calculating scattering amplitudes e±ciently, hep-ph/9601359.

### 24

F.A. Berends, W.T. Giele and H. Kuijf, On six jet production at hadron colliders, Phys. Lett.

B 232 (1989) 266;

F.A. Berends, H. Kuijf, B. Tausk and W.T. Giele, On the production of a W and jets at

hadron colliders, Nucl. Phys. B 357 (1991) 32;

F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without

Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237];

P. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, On the computation of multigluon

amplitudes, Phys. Lett. B 439 (1998) 157 [hep-ph/9807207];

P.D. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, Multi-jet production in hadron

collisions, Eur. Phys. J. C 24 (2002) 447 [hep-ph/0202201];

M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, Alpgen, a generator for

hard multiparton processes in hadronic collisions, J. High Energy Phys. 07 (2003) 001

### hep-ph/0206293

.

### 25

T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput.

Phys. Commun. 81 (1994) 357 [hep-ph/9401258];

A. Pukhov et al., COMPHEP: a package for evaluation of Feynman diagrams and integration

over multi-particle phase space. User's manual for version 33, hep-ph/9908288;

F. Yuasa et al., Automatic computation of cross sections in hep: status of grace system, Prog.

Theor. Phys. Suppl. 138 (2000) 18 [hep-ph/0007053];

F. Krauss, R. Kuhn and G. So®, AMEGIC++ 1.0: a matrix element generator in C++, J.

High Energy Phys. 02 (2002) 044 [hep-ph/0109036];

F. Maltoni and T. Stelzer, Madevent: automatic event generation with madgraph, J. High

Energy Phys. 02 (2003) 027 [hep-ph/0208156].

### 26

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes

into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265];

Z. Bern, L.J. Dixon and D.A. Kosower, Unitarity-based techniques for one-loop calculations

in QCD, Nucl. Phys. 51C (Proc. Suppl.) (1996) 243 [hep-ph/9606378].