Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Valentin [Valya] Khoze

Georgiou, G., Glover, E. W. N. & Khoze, V. V. (2004). Non-MHV tree amplitudes in gauge theory. Journal of High Energy Physics 2004(07): 048.

Author(s) from Durham

Abstract

We show how all non-MHV tree-level amplitudes in 0 ≤ ≤ 4 gauge theories can be obtained directly from the known MHV amplitudes using the scalar graph approach of Cachazo, Svrcek and Witten. Generic amplitudes are given by sums of inequivalent scalar diagrams with MHV vertices. The novel feature of our method is that after the `Feynman rules' for scalar diagrams are used, together with a particular choice of the reference spinor, no further helicity-spinor algebra is required to convert the results into a numerically usable form. Expressions for all relevant individual diagrams are free of singularities at generic phase space points, and amplitudes are manifestly Lorentz- (and gauge-) invariant. To illustrate the method, we derive expressions for n-point amplitudes with three negative helicities carried by fermions and/or gluons. We also write down a supersymmetric expression based on Nair's supervertex which gives rise to all such amplitudes in 0 ≤ ≤ 4 gauge theories.

References

1

F. Cachazo, P. Svrcek and E. Witten, MHV vertices and tree amplitudes in gauge theory,
hep-th/0403047.

2

E. Witten, Perturbative gauge theory as a string theory in twistor space, hep-th/0312171.

3

G. Georgiou and V.V. Khoze, Tree amplitudes in gauge theory as scalar MHV diagrams, J.
High Energy Phys. 05 (2004) 070 [hep-th/0404072].

4

C.-J. Zhu, The googly amplitudes in gauge theory, J. High Energy Phys. 04 (2004) 032

hep-th/0403115

;
J.-B. Wu and C.-J. Zhu, MHV vertices and scattering amplitudes in gauge theory, J. High
Energy Phys. 07 (2004) 032 [hep-th/0406085].

5

I. Bena, Z. Bern and D.A. Kosower, Twistor-space recursive formulation of gauge theory
amplitudes, hep-th/0406133.

6

D.A. Kosower, Next-to-maximal helicity violating amplitudes in gauge theory,
hep-th/0406175.

7

F. Cachazo, P. Svrcek and E. Witten, Twistor space structure of one-loop amplitudes in
gauge theory, hep-th/0406177.

8

N. Berkovits, An alternative string theory in twistor space for N = 4 super{Yang-Mills, Phys.
Rev. Lett. 93 (2004) 011601 [hep-th/0402045];
N. Berkovits and L. Motl, Cubic twistorial string ¯eld theory, J. High Energy Phys. 04 (2004)
056 [hep-th/0403187].

9

R. Roiban, M. Spradlin and A. Volovich, A googly amplitude from the b-model in twistor
space, J. High Energy Phys. 04 (2004) 012 [hep-th/0402016];
R. Roiban, M. Spradlin and A. Volovich, On the tree-level S-matrix of Yang-Mills theory,
Phys. Rev. D 70 (2004) 026009 [hep-th/0403190].

10

A. Neitzke and C. Vafa, N = 2 strings and the twistorial Calabi-Yau, hep-th/0402128;
N. Nekrasov, H. Ooguri and C. Vafa, S-duality and topological strings, hep-th/0403167.

11

E. Witten, Parity invariance for strings in twistor space, hep-th/0403199.

12

S. Gukov, L. Motl and A. Neitzke, Equivalence of twistor prescriptions for super Yang-Mills,
hep-th/0404085.

13

W. Siegel, Untwisting the twistor superstring, hep-th/0404255.

14

S. Giombi, R. Ricci, D. Robles-Llana and D. Trancanelli, A note on twistor gravity
amplitudes, hep-th/0405086.

15

A.D. Popov and C. Saemann, On supertwistors, the Penrose-Ward transform and N = 4
super Yang-Mills theory, hep-th/0405123.

16

N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory,
hep-th/0406051.

17

V.P. Nair, A current algebra for some gauge theory amplitudes, Phys. Lett. B 214 (1988) 215.

18

M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the s matrix,
Phys. Rev. D 15 (1977) 996;
M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in
supersymmetric theories, Nucl. Phys. B 124 (1977) 81.

19

S.J. Parke and T.R. Taylor, An amplitude for N gluon scattering, Phys. Rev. Lett. 56 (1986)
2459.

20

F.A. Berends and W.T. Giele, Recursive calculations for processes with N gluons, Nucl. Phys.
B 306 (1988) 759.

21

F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single
bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124;
P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple bremsstrahlung in gauge
theories at high-energies, 1. General formalism for quantum electrodynamics, Nucl. Phys. B
206 (1982) 53;
R. Kleiss and W.J. Stirling, Spinor techniques for calculating p¹p ! W§=Z0+ jets, Nucl.
Phys. B 262 (1985) 235;
J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and the
ggq¹q lepton anti-lepton subprocess, Phys. Lett. B 161 (1985) 333.

22

M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200
(1991) 301.

23

L.J. Dixon, Calculating scattering amplitudes e±ciently, hep-ph/9601359.

24

F.A. Berends, W.T. Giele and H. Kuijf, On six jet production at hadron colliders, Phys. Lett.
B 232 (1989) 266;
F.A. Berends, H. Kuijf, B. Tausk and W.T. Giele, On the production of a W and jets at
hadron colliders, Nucl. Phys. B 357 (1991) 32;
F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without
Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237];
P. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, On the computation of multigluon
amplitudes, Phys. Lett. B 439 (1998) 157 [hep-ph/9807207];
P.D. Draggiotis, R.H.P. Kleiss and C.G. Papadopoulos, Multi-jet production in hadron
collisions, Eur. Phys. J. C 24 (2002) 447 [hep-ph/0202201];
M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, Alpgen, a generator for
hard multiparton processes in hadronic collisions, J. High Energy Phys. 07 (2003) 001

hep-ph/0206293

.

25

T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput.
Phys. Commun. 81 (1994) 357 [hep-ph/9401258];
A. Pukhov et al., COMPHEP: a package for evaluation of Feynman diagrams and integration
over multi-particle phase space. User's manual for version 33, hep-ph/9908288;
F. Yuasa et al., Automatic computation of cross sections in hep: status of grace system, Prog.
Theor. Phys. Suppl. 138 (2000) 18 [hep-ph/0007053];
F. Krauss, R. Kuhn and G. So®, AMEGIC++ 1.0: a matrix element generator in C++, J.
High Energy Phys. 02 (2002) 044 [hep-ph/0109036];
F. Maltoni and T. Stelzer, Madevent: automatic event generation with madgraph, J. High
Energy Phys. 02 (2003) 027 [hep-ph/0208156].

26

Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes
into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265];
Z. Bern, L.J. Dixon and D.A. Kosower, Unitarity-based techniques for one-loop calculations
in QCD, Nucl. Phys. 51C (Proc. Suppl.) (1996) 243 [hep-ph/9606378].