Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Dr Douglas Halliday

Palosz W., Grasza K., Durose K., Halliday D. P., Boyall N. M., Dudley M., Raghothamachar B. & Cai L. (2003). The effect of the wall contact and post-growth cool-down on defects in CdTe crystals grown by 'contactless' physical vapour transport. Journal of Crystal Growth 254(3-4): 316-328.

Author(s) from Durham

Abstract

A series of cadmium telluride crystals grown by physical vapour transport without contact with the ampoule walls and cooled at different rates were characterized using synchrotron X-ray topography, photoluminescence, and chemical etching. Strain from sticking to silica glass and its effect on the dislocation density is shown. It was found that very fast cool-down (e.g. air or water quenching) increases dislocation density by at least one order of magnitude. None of the samples had random dislocation distributions, but coarse clumping of dislocations on the scale of more than 100 μm was more prevalent in slowly cooled crystals. Photoluminescence revealed that slow cooling (e.g. 10°C/h) favoured the donor–acceptor luminescence involving complex A centres. This was diminished in fast-cooled material, an effect presumed to be due to dislocation gettering. Fast cooling also enhanced the formation of shallow acceptors. Implications for Bridgman growth of CdTe and the vapour growth of CdZnTe are discussed briefly.

References

1

K. Grasza, U. Zuzga-Grasza, A. Jedrzejczak, R.R.
Galazka, J. Majewski, A. Szadkowski, E. Grodzicka,
J. Crystal Growth 123 (1992) 519.

2

K. Grasza, W. Palosz, S.B. Trivedi, J. Crystal Growth 207
(1999) 179.

3

K. Grasza, W. Palosz, Cryst. Res. Technol. 34 (1999) 565.

4

M. Dudley, In: D. Bloor, R. Brook, M. Flemings (Eds.),
Encyclopaedia of Advanced Materials, Vol. 4, Subhash
Mahajan and Robert Cahn., Pergamon Press, New York,
1994, p. 2950.

5

D. Rose, K. Durose, W. Palosz, A. Szczerbakow,
K. Grasza, J. Phys. D: Appl. Phys. 31 (1998) 1009.

6

D. Waugh, Geography: an integrated approach, Nelson,
Cheltenham, UK, 1990.

7

C.C.R. Watson, K. Durose, A.J.K. Banister, E. O’Keefe,
S.K. Bains, Mater. Sci. Eng. B 16 (1993) 113.

8

T. Taguchi, C. Onodera, Mater. Sci. Forum 65–66 (1990)
235.

9

B. Yang, Y. Ishikawa, T. Miki, Y. Doumae, T. Tomizono,
M. Isshiki, J. Crystal Growth 159 (1996) 171.

10

E. Molva, J.L. Pautrat, K. Saminadayar, G. Milchberg, N.
Magnea, Phys. Rev. B: Condens. Matter 30 (1984)
3344.

11

W. Stadler, D.M. Hofmann, H.C. Alt, T. Muschik,
B.K. Meyer, Phys. Rev. B 51 (1995) 10619.

12

S. Hildebrandt, H. Uniewski, J. Schreiber, H.S. Leipner,
J. Phys. III 7 (1997) 1505.

13

H.Y. Shin, C.Y. Sun, Mater. Sci. Eng. B—Solid State
Mater. Adv. Technol. 52 (1998) 78.

14

L.O. Bubulac, J. Bajaj, W.E. Tennant, P.R. Newman, D.S.
Lo, J. Crystal Growth 86 (1988) 536.

15

S. Seto, A. Tanaka, Y. Masa, M. Kawashima, J. Crystal
Growth 117 (1992) 271.

16

W. Palosz, D. Gillies, K. Grasza, H. Chung, B. Raghothamachar,
M. Dudley, J. Crystal Growth 182 (1997) 37.

17

W. Palosz, K. Grasza, D. Gillies, G. Jerman, J. Crystal
Growth 169 (1996) 20.