Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Prof Carlos Frenk

Springel, V., White, S. D. M., Jenkins, A. R., Frenk, C. S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J. C., Peacock, J. A., Cole, S., Thomas, P., Couchman, H., Evrard, A., Colberg, J. & Pearce, F. (2005). Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435(7042): 629-636.

Author(s) from Durham

Abstract

The cold dark matter model has become the leading theoretical picture for the formation of structure in the Universe. This model, together with the theory of cosmic inflation, makes a clear prediction for the initial conditions for structure formation and predicts that structures grow hierarchically through gravitational instability. Testing this model requires that the precise measurements delivered by galaxy surveys can be compared to robust and equally precise theoretical calculations. Here we present a simulation of the growth of dark matter structure using 2,1603 particles, following them from redshift z = 127 to the present in a cube-shaped region 2.230 billion lightyears on a side. In postprocessing, we also follow the formation and evolution of the galaxies and quasars. We show that baryon-induced features in the initial conditions of the Universe are reflected in distorted form in the low-redshift galaxy distribution, an effect that can be used to constrain the nature of dark energy with future generations of observational surveys of galaxies.

References

1. Bennett, C. L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: Preliminary maps and basic results. Astrophys. J. Suppl. 148, 1–-27
(2003).
2. Spergel, D. N. et al. First-year Wilkinson Microwave Anisotropy Probe
(WMAP) observations: Determination of cosmological parameters. Astrophys.
J. Suppl. 148, 175–-194 (2003).
3. Riess, A. G. et al. Observational evidence from supernovae for an accelerating
universe and a cosmological constant. Astron. J. 116, 1009–-1038 (1998).
4. Perlmutter, S. et al. Measurements of omega and lambda from 42 high-redshift
supernovae. Astrophys. J. 517, 565–-586 (1999).
5. White, S. D. M., Navarro, J. F., Evrard, A. E. & Frenk, C. S. The baryon content
of galaxy clusters: a challenge to cosmological orthodoxy. Nature 366,
429–-433 (1993).
6. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of largescale
structure in a universe dominated by cold dark matter. Astrophys. J. 292,
371–-394 (1985).
7. Colberg, J. M. et al. Clustering of galaxy clusters in cold dark matter universes.
Mon. Not. R. Astron. Soc. 319, 209–-214 (2000).
8. Evrard, A. E. et al. Galaxy clusters in Hubble volume simulations: Cosmological
constraints from sky survey populations. Astrophys. J. 573, 7–-36 (2002).
9. Wambsganss, J., Bode, P. & Ostriker, J. P. Giant arc statistics in concord with a
concordance lambda cold dark matter universe. Astrophys. J. 606, L93–-L96
(2004).
10. Bond, J. R., Kofman, L. & Pogosyan, D. How filaments of galaxies are woven
into the cosmic web. Nature 380, 603–-606 (1996).
11. Jenkins, A. et al. The mass function of dark matter haloes. Mon. Not. R. Astron.
Soc. 321, 372–-384 (2001).
12. Reed, D. et al. Evolution of the mass function of dark matter haloes. Mon. Not.
R. Astron. Soc. 346, 565–-572 (2003).
13. Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering:
ellipsoidal collapse and the moving barrier. Mon. Not. R. Astron. Soc. 329, 61–-75
(2002).
14. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by
self-similar gravitational condensation. Astrophys. J. 187, 425–-438 (1974).
15. Efstathiou, G. & Rees, M. J. High-redshift quasars in the Cold Dark Matter
cosmogony. Mon. Not. R. Astron. Soc. 230, 5–-11 (1988).
16. Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster
of galaxies. –- I. Results at z ¼ 0. Mon. Not. R. Astron. Soc. 328, 726–-750
(2001).
17. Kauffmann, G. & Haehnelt, M. A unified model for the evolution of galaxies and
quasars. Mon. Not. R. Astron. Soc. 311, 576–-588 (2000).
18. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering.
Astrophys. J. 379, 52–-79 (1991).
19. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution
of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264,
201–-218 (1993).
20. Cole, S., Aragon-Salamanca, A., Frenk, C. S., Navarro, J. F. & Zepf, S. E. A recipe
for galaxy formation. Mon. Not. R. Astron. Soc. 271, 781–-806 (1994).
21. Baugh, C. M., Cole, S. & Frenk, C. S. Evolution of the Hubble sequence in
hierarchical models for galaxy formation. Mon. Not. R. Astron. Soc. 283,
1361–-1378 (1996).
22. Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation:
the local Universe. Mon. Not. R. Astron. Soc. 310, 1087–-1110 (1999).
23. Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. Clustering of
galaxies in a hierarchical universe. –- I. Methods and results at z ¼ 0. Mon. Not.
R. Astron. Soc. 303, 188–-206 (1999).
24. Fan, X. et al. A survey of z . 5.7 quasars in the Sloan Digital Sky Survey. II.
Discovery of three additional quasars at z . 6. Astron. J. 125, 1649–-1659
(2003).
25. Fan, X. et al. A survey of z . 5.7 quasars in the Sloan Digital Sky Survey. III.
Discovery of five additional quasars. Astron. J. 128, 515–-522 (2004).
26. Tremaine, S. et al. The slope of the black hole mass versus velocity dispersion
correlation. Astrophys. J. 574, 740–-753 (2002).
27. Merritt, D. & Ferrarese, L. Black hole demographics from the MBH-j relation.
Mon. Not. R. Astron. Soc. 320, L30–-L34 (2001).
28. Hawkins, E. et al. The 2dF Galaxy Redshift Survey: correlation functions,
peculiar velocities and the matter density of the universe. Mon. Not. R. Astron.
Soc. 346, 78–-96 (2003).
29. Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of
galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793–-808 (2000).
30. Weinberg, D. H., Dave´, R., Katz, N. & Hernquist, L. Galaxy clustering and galaxy
bias in a LCDM universe. Astrophys. J. 601, 1–-21 (2004).
31. Padilla, N. D. & Baugh, C. M. The power spectrum of galaxy clustering in the
APM survey. Mon. Not. R. Astron. Soc. 343, 796–-812 (2003).
32. Zehavi, I. et al. On departures from a power law in the galaxy correlation
function. Astrophys. J. 608, 16–-24 (2004).
33. Norberg, P. et al. The 2dF Galaxy Redshift Survey: luminosity dependence of
galaxy clustering. Mon. Not. R. Astron. Soc. 328, 64–-70 (2001).
34. Zehavi, I. et al. Galaxy clustering in early Sloan Digital Sky Survey redshift data.
Astrophys. J. 571, 172–-190 (2002).
35. Madgwick, D. S. et al. The 2dF Galaxy Redshift Survey: galaxy clustering per
spectral type. Mon. Not. R. Astron. Soc. 344, 847–-856 (2003).
36. de Bernardis, P. et al. A flat Universe from high-resolution maps of the cosmic
microwave background radiation. Nature 404, 955–-959 (2000).
37. Mauskopf, P. D. et al. Measurement of a peak in the Cosmic Microwave
Background power spectrum from the North American test flight of
Boomerang. Astrophys. J. 536, L59–-L62 (2000).
38. Blake, C. & Glazebrook, K. Probing dark energy using baryonic oscillations in
the galaxy power spectrum as a cosmological ruler. Astrophys. J. 594, 665–-673
(2003).
39. Jenkins, A. et al. Evolution of structure in cold dark matter universes. Astrophys.
J. 499, 20–-40 (1998).
40. Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. The statistics of peaks of
Gaussian random fields. Astrophys. J. 304, 15–-61 (1986).
41. Adelberger, K. L. et al. A counts-in-cells analysis of Lyman-break galaxies at
redshift Z ¼ 3. Astrophys. J. 505, 18–-24 (1998).
42. Cole, S. et al. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the
final dataset and cosmological implications. Mon. Not. R. Astron. Soc.
(submitted); preprint at khttp://xxx.lanl.gov/astro-ph/0501174l (2005).
43. Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale
correlation function of SDSS luminous red galaxies. Astrophys. J. (submitted) preprint at khttp://xxx.lanl.gov/astro-ph/0501171l (2005).
44. Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless
and gasdynamical cosmological simulations. N. Astron. 6, 79–-117 (2001).
45. Xu, G. A new parallel n-body gravity solver: TPM. Astrophys. J. Suppl. 98,
355–-366 (1995).
46. Barnes, J. & Hut, P. A hierarchical O(N logN) force-calculation algorithm.
Nature 324, 446–-449 (1986).
47. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles Ch. 5
(McGraw-Hill, New York, 1981).
48. Colless, M. et al. The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon.
Not. R. Astron. Soc. 328, 1039–-1063 (2001).
49. White, S. D. M. in Cosmology and Large-Scale Structure (eds Schaefer, R., Silk, J.,
Spiro, M. & Zinn-Justin, J.) Ch. 8 (Elsevier, Dordrecht, 1996).
50. Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to Cosmic
Microwave Background anisotropies. Astrophys. J. 469, 437–-444 (1996).
Supplementary Information is linked to the online version of the paper at
www.nature.com/nature.
Acknowledgements The computations reported here were performed at the
Rechenzentrum der Max-Planck-Gesellschaft in Garching, Germany.
Author Information Reprints and permissions information is available at
npg.nature.com/reprintsandpermissions. The authors declare no competing
financial interests. Correspondence and requests for materials should be
addressed to V.S. (vspringel@mpa-garching.mpg.de).