Durham University

Department of Physics

Staff profile

Publication details for Prof Carlos Frenk

Cole, S., Norberg, P., Baugh, C. M., Frenk, C. S., Bland-Hawthorn, J., Bridges, T., Cannon, R., Colless, M., Collins, C., Couch, W., Cross, N., Dalton, G., De Propris, R., Driver, S. P., Efstathiou, G., Ellis, R. S., Glazebrook, K., Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Maddox, S., Madgwick, D., Peacock, J. A., Peterson, B. A., Sutherland, W. & Taylor, K. (2001). The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions. Monthly Notices of the Royal Astronomical Society 326(1): 255-273.

Author(s) from Durham

Abstract

We combine the Two Micron All Sky Survey (2MASS) Extended Source Catalogue and the 2dF Galaxy Redshift Survey to produce an infrared selected galaxy catalogue with 17 173 measured redshifts. We use this extensive data set to estimate the galaxy luminosity functions in the J- and KS-bands. The luminosity functions are fairly well fitted by Schechter functions with parameters MJ*−5 log h=−22.36±0.02, αJ=−0.93±0.04, ΦJ*=0.0104±0.0016 h3 Mpc3 in the J-band and MKS*−5 log h=−23.44±0.03, αKS=−0.96±0.05, ΦKS*=0.0108±0.0016 h3 Mpc3 in the KS-band (2MASS Kron magnitudes). These parameters are derived assuming a cosmological model with Ω0=0.3 and Λ0=0.7. With data sets of this size, systematic rather than random errors are the dominant source of uncertainty in the determination of the luminosity function. We carry out a careful investigation of possible systematic effects in our data. The surface brightness distribution of the sample shows no evidence that significant numbers of low surface brightness or compact galaxies are missed by the survey. We estimate the present-day distributions of bJ−KS and J−KS colours as a function of the absolute magnitude and use models of the galaxy stellar populations, constrained by the observed optical and infrared colours, to infer the galaxy stellar mass function. Integrated over all galaxy masses, this yields a total mass fraction in stars (in units of the critical mass density) of Ωstarsh =(1.6±0.24)×103 for a Kennicutt initial mass function (IMF) and Ωstarsh =(2.9±0.43)×103 for a Salpeter IMF. These values are consistent with those inferred from observational estimates of the total star formation history of the Universe provided that dust extinction corrections are modest.

References

Allen C. W., 1973, Astrophysical Quantities, 3rd edn. Athlone
Press,
London
Blanton M. R. et al., 2001, AJ, 121,2358
Bruzual A. G., Charlot S., 1993, ApJ, 405, 538
Burles S., Tytler D., 1998, ApJ, 507, 732
Burles S., Nollet K. M., Truran J. N., Turner M. S., 1999, Phys. Rev.
Lett.,
82, 4176
Calzetti D., 1999, Ap&SS, 266, 243
Carpenter J. M., 2001, AJ, 324, 825
Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
Cross N. et al., 2001, MNRAS, in press (astro-ph/0012165)
Efstathiou G., Ellis R. S., Peterson B. A., 1988, MNRAS, 232, 431
Evrard A. E., 1999, in Banday T., Sheth R., da Costa L. N., eds, in Proc.
MPA-ESO Cosmology Conf. From Recombination to Garching. ESO
Publications, Garching bei, Mu¨nchen, p. 249
Ferrara A., Bianchi S., Cimatti A., Giovanardi C., 1999, ApJS, 123, 423
Folkes S. et al., 1999, MNRAS, 308, 459
Fukugita M., Hogan C. J., Peebles P. J. E., 1998, ApJ, 503, 518.
Gardner J. P., Sharples R. M., Carrasco B. E., Frenk C. S., 1996, MNRAS,
282, 1
Gardner J. P., Sharples R. M., Frenk C. S., Carrasco B. E., 1997, ApJ,
480,
99
Glazebrook K., Peacock J. A., Collins C. A., Miller L., 1994, MNRAS, 266,
65
Glazebrook K., Peacock J. A., Miller L., Collins C. A., 1995, MNRAS, 275,
169
Jarrett T. H., Chester T., Cutri R., Schneider S., Skrutskie M., 2000,
ApJ,
119, 2498
Johnson H. L., 1966, ARA&A, 4, 193
Kennicutt R. C., 1983, ApJ, 272, 54
Kennicutt R. C., 1992, ApJS, 79, 255
Kochanek C. S. et al., 2001, ApJ, in press (astro-ph/0011456)
Kron R. G., 1980, ApJS, 43, 305
Loveday J., 2000, MNRAS, 312, 517
Maddox S. J., Efstathiou G., SutherlandW. J., Loveday J., 1990a, MNRAS,
243, 692
Maddox S. J., Efstathiou G., Sutherland W. J., 1990b, MNRAS, 246, 433
Maddox S. J., Sutherland W. J., Efstathiou G., Loveday J., Peterson B.
A.,
1990c, MNRAS, 247, 1P
Maddox S. J., Efstathiou G., Sutherland W. J., Loveday J., 1996, MNRAS,
283, 1227
Madgwick D., Lahav O., Taylor K., 2001, ESO Astrophysics Symp.
Springer-Verlag, in press (astro-ph/0010307)
Metcalfe N., Fong R., Shanks T., 1995, MNRAS, 274, 769
Mobasher B., Sharples R. M., Ellis R. S., 1993, MNRAS, 263, 560
Persic M., Salucci P., 1999, MNRAS, 309, 923P
Phillipps S., Davies J., Disney M., 1990, MNRAS, 242, 235
Renzini A., Voli M., 1981, A&A, 94, 175
Salpeter E. E., 1955, ApJ, 121, 61
Salucci P., Persic M., 1999, MNRAS, 309, 923
Sandage A., Tammann G. A., Yahil A., 1978, ApJ, 232, 352
Shanks T., 1990, in Mattilla K., ed., Galactic and Extragalactic
Background
Radiation. Reidel, Dordrecht, p. 269
Steidel C. C., Adelberger K. L., Giavalisco M., Dickinson M., Pettini M.,
1999, ApJ, 519, 1
Storrie-Lombardi L., Wolfe A., 2000, ApJ, 543, 552 (astro-ph/0006044)
Szokoly G. P., Subbarao M. U., Connolly A. J., Mobasher B., 1998, ApJ,
492, 452
Woosley S. E., Weaver T. A., 1995, ApJS, 101, 181
Wright E. L., 2001, ApJ, submitted (astro-ph/0102053).