Cookies

We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Prof Richard Bower

Benson, A. J. Bower, R. G. , Frenk, C. S. , Lacey, C. G. , Baugh, C. M. & Cole, S. (2003). What shapes the luminosity function of galaxies? Astrophysical Journal 599(1): 38-49.

Author(s) from Durham

Abstract

We investigate the physical mechanisms that shape the luminosity function of galaxies in hierarchical clustering models. Beginning with the mass function of dark matter halos in the CDM ( cold dark matter) cosmology, we show, in incremental steps, how gas cooling, photoionization at high redshift, feedback processes, galaxy merging, and thermal conduction affect the shape of the luminosity function. We consider three processes whereby supernovae and stellar wind energy can affect the forming galaxy: (1) the reheating of cold disk gas to the halo temperature; (2) expansion of the hot, diffuse halo gas; and (3) complete expulsion of cold disk gas from the halo. We demonstrate that while feedback of form 1 is able to flatten the faint end of the galaxy luminosity function, this process alone does not produce the sharp cutoff observed at large luminosities. Feedback of form 2 is also unable to solve the problem at the bright end of the luminosity function. The relative paucity of very bright galaxies can only be explained if cooling in massive halos is strongly suppressed. This might happen if thermal conduction near the centers of halos is very efficient, or if a substantial amount of gas is expelled from halos by process 3 above. Conduction is a promising mechanism, but an uncomfortably high efficiency is required to suppress cooling to the desired level. If, instead, superwinds are responsible for the lack of bright galaxies, then the total energy budget required to obtain a good match to the galaxy luminosity function greatly exceeds the energy available from supernova explosions. The mechanism is only viable if the formation of central supermassive black holes and the associated energy generation play a crucial role in limiting the amount of stars that form in the host galaxy. The models that best reproduce the galaxy luminosity function also give reasonable approximations to the Tully-Fisher relation and the galaxy autocorrelation function.

References

Adelberger, K. L., Steidel, C. C., Shapley, A. E., & Pettini, M. 2003, ApJ,
584, 45
Allen, S. W., Schmidt, R. W., Fabian, A. C., & Ebeling, H. 2003, MNRAS,
342, 287
Allen, S. W., et al. 2001, MNRAS, 324, 842
Bacon, D. J., Massey, R. J., Refrigier, A. R., & Ellis, R. S. 2003, MNRAS,
344, 673
Baugh, C. M. 1996, MNRAS, 280, 267
Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M., & Lacey, C. G. 2000,
MNRAS, 311, 793
Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S., & Frenk, C. S. 2002,
MNRAS, 333, 156
Benson, A. J., Pearce, F. R., Frenk, C. S., Baugh, C. M., & Jenkins, A.
2001, MNRAS, 320, 261
Berlind, A. A., et al. 2003, ApJ, 593, 1
Blanton, M. R., et al. 2003, ApJ, 592, 819
Bo¨hringer, H., Matsushita, K., Churazov, E., Ikebe, Y., & Chen, Y. 2002,
A&A, 382, 804
Bower, R. G., Benson, A. J., Lacey, C. G., Baugh, C. M., Cole, S., & Frenk,
C. S. 2001, MNRAS, 325, 497
Bru¨ggen, M., Kaiser, C. R., Churazov, E., & Ensslin, T. A. 2002, MNRAS,
331, 545
Cavaliere, A., Lapi, A., & Menci,N. 2002, ApJ, 581, L1
Cole, S. 1991, ApJ, 367, 45
Cole, S., Arago´n-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E.
1994, MNRAS, 271, 781
Cole, S., Lacey, C. G., Baugh, C. M., & Frenk, C. S. 2000, MNRAS, 319,
168
Cole S., et al. 2001, MNRAS, 326, 255
Cooray, A., & Sheth, R. 2002, Phys. Rep., 372, 1
Cowie, L. L., &McKee, C. F. 1977, ApJ, 211, 135
Efstathiou,G. 2000, MNRAS, 317, 697
Eke, V. R., Cole, S. M., & Frenk, C. S. 1996, MNRAS, 282, 263
Eke, V. R., Navarro, J. F., & Frenk, C. S. 1998, ApJ, 503, 569
Ensslin, T. A., Wang, Y., Nath, B. B., & Biermann, P. L. 1998, A&A, 333,
L47
Ettori, S., De Grandi, S., & Molendi, S. 2002, A&A, 391, 841
Fabian, A. C., Mushotzky, R. F., Nulsen, P. E. J., & Peterson, J. R. 2001,
MNRAS, 321, L20
Fabian, A. C., Voigt, L. M., & Morris, R. G. 2002, MNRAS, 335, L71
Gruzinov, A. 2002, preprint (astro-ph/0203031)
Helly, J. C., Cole, S., Frenk, C. S., Baugh, C. M., Benson, A., Lacey, C., &
Pearce, F. R. 2003, MNRAS, 338, 913
Hoekstra, H., Yee, H. K. C., & Gladders, M. D. 2002, ApJ, 577, 595
Huang, J.-S., Glazebrook, K., Cowie, L. L., & Tinney, C. 2003, ApJ, 584,
203
Jarvis, M., Bernstein, G. M., Fischer, P., Smith, D., Jain, B., Tyson, J. A.,
&Wittman, D. 2003, AJ, 125, 1014
Jenkins, A., Frenk, C. S.,White, S. D. M., Colberg, J. M., Cole, S., Evrard,
A. E., Couchman, H. M. P., & Yoshida, N. 2001, MNRAS, 321,
372
Johnstone, R. M., Allen, S. W., Fabian, A. C., & Sanders, J. S. 2002,
MNRAS, 336, 299
Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999,
MNRAS, 303, 188
Kauffmann, G., White, S. D. M., & Guiderdoni, B. 1993, MNRAS, 264,
201
Kay, S. T., Pearce, F. R., Frenk, C. S., & Jenkins, A. 2002, MNRAS, 330,
113
Kennicutt, R. C., Jr. 1983, ApJ, 272, 54
Kochanek, C. S., et al. 2001, ApJ, 560, 566
Lacey, C., Guiderdoni, B., Rocca-Volmerange, B., & Silk, J. 1993, ApJ,
402, 15
Martin, C. L. 1999, ApJ, 513, 156
Mathewson, D. S., Ford, V. L., & Buchhorn, M. 1992, ApJS, 81, 413
McNamara, B. R., et al. 2001, ApJ, 562, L149
Melchiori,A., Bode, P., Bahcall, N. A., & Silk, J. 2003, ApJ, 586, L1
Murali, C., Katz, N., Hernquist, L., Weinberg, D. H., & Dave´, R. 2002,
ApJ, 571, 1
Narayan, R., & Medvedev, M. V. 2001, ApJ, 562, L129
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563
———.1997, ApJ, 490, 493
Nulsen, P. E. J., David, L. P.,McNamara, B. R., Jones, C., Forman, W. R.,
&Wise, M. 2002, ApJ, 568, 163
O’Meara, J. M., Tytler, D., Kirkman, D., Suzuki, N., Prochaska, J. X.,
Lubin, D., & Wolfe, A. M. 2001, ApJ, 552, 718
Peacock, J. A. 2003, in AIP Conf. Proc. 666, The Emergence of Cosmic
Structure, ed. S. S. Holt & C. S. Reynolds (New York: AIP), 275
Peacock, J. A., & Smith, R. 2000, MNRAS, 318, 1144
Pearce, F. R., Jenkins, A., Frenk, C. S., White, S. D. M., Thomas, P. A.,
Couchman, H. M. P., Peacock, J. A., & Efstathiou G. 2001, MNRAS,
326, 649
Peterson, J. R., et al. 2001, A&A, 365, L104
Pettini, M., Rix, S. A., Steidel, C. C., Adelberger, K. L., Hunt, M. P., &
Shapley, A. E. 2002, ApJ, 569, 742
Quilis, V., Bower, R. G., & Balogh M. L. 2001, MNRAS, 328, 1091
Rees, M. J., & Ostriker, J. P. 1977, MNRAS, 179, 541
Shu, C., Mo, H. J., & Mao, S. 2003, MNRAS, submitted (astro-ph/
0301035)
Sievers, J. L., et al. 2003, ApJ, 591, 599
Smith, G. P., Edge, A. C., Eke, V. R., Nichol, R. C., Smail, I., & Kneib,
J.-P. 2003, ApJ, 590, L79
Somerville, R. S., & Primack, J. R. 1999, MNRAS, 310, 1087
Spergel,D., et al. 2003, ApJS, 148, 175
Spitzer, L. 1962, Physics of Fully Ionized Gases (New York: Wiley)
Springel, V., & Hernquist, L. 2003, MNRAS, 339, 289
Strickland,D.K., & Stevens, I. R. 2000, MNRAS, 314, 511
Tamura, T., et al. 2001, A&A, 365, L87
Taylor, G. B., Fabian, A. C., & Allen, S. W. 2002, MNRAS, 334, 769
van Kampen, E., Jimenez, R., & Peacock, J. A. 1999, MNRAS,
310, 43
Viana, P. T. P.,Nichol, R. C., & LiddleA. R. 2002, ApJ, 569, L75.
Voigt, L. M., Schmidt, R. W., Fabian, A. C., Allen, S. W., & Johnstone,
R. M. 2002, MNRAS, 335, L7
Voit, G. M., Bryan, G. L., Balogh, M. L., & Bower, R. G. 2002, ApJ, 576,
601
Wang, X., Tegmark, M., Jain, B., & Zaldarriaga, M. 2002, preprint
(astro-ph/0212417)
Weinberg, D. H., Dave´, R., Katz, N., & Hernquist, L. 2003, ApJ, in press
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52
White, S. D. M., & Rees, M. J. 1978, MNRAS, 183, 341
Yoshida, N., Stoehr, F., Springel, V., & White, S. D. M. 2002, MNRAS,
335, 762.