We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Durham University

Department of Physics

Staff profile

Publication details for Prof Tim Roberts

Sutton, A.D., Roberts, T.P., Gladstone, J.C., Farrell, S.A., Reilly, E., Goad, M.R. & Gehrels, N. (2013). A bright ultraluminous X-ray source in NGC 5907. Monthly Notices of the Royal Astronomical Society 434(2): 1702-1712.

Author(s) from Durham


We present a multimission X-ray analysis of a bright (peak observed 0.3–10 keV luminosity of ∼6 × 1040 erg s−1), but relatively highly absorbed ultraluminous X-ray source (ULX) in the edge-on spiral galaxy NGC 5907. The ULX is spectrally hard in X-rays (Γ ∼ 1.2–1.7, when fitted with an absorbed power law), and has a previously reported hard spectral break consistent with it being in the ultraluminous accretion state. It is also relatively highly absorbed for a ULX, with a column of ∼0.4–0.9 × 1022 atom cm−2 in addition to the line-of-sight column in our Galaxy. Although its X-ray spectra are well represented by accretion disc models, its variability characteristics argue against this interpretation. The ULX spectra instead appear dominated by a cool, optically thick Comptonizing corona. We discuss how the measured 9 per cent rms variability and a hardening of the spectrum as its flux diminishes might be reconciled with the effects of a very massive, radiatively driven wind and subtle changes in the corona, respectively. We speculate that the cool disc-like spectral component thought to be produced by the wind in other ULXs may be missing from the observed spectrum due to a combination of a low temperature (∼0.1 keV), and the high column to the ULX. We find no evidence, other than its extreme X-ray luminosity, for the presence of an intermediate mass black hole (MsBHs, ∼ 102−104 M⊙) in this object. Rather, the observations can be consistently explained by a massive (≳ 20 M⊙) stellar remnant black hole in a super-Eddington accretion state.


Published on behalf of the Royal Astronomical Society.