We use cookies to ensure that we give you the best experience on our website. You can change your cookie settings at any time. Otherwise, we'll assume you're OK to continue.

Department of Physics

Staff profile

Publication details for Dr Alastair Edge

Mauskopf, P. D., Ade, P. A. R., Allen, S. W., Church, S.E., Edge, A. C., Ganga, K. M., Holzapfel, W. L., Lange, A. E., Rownd, B. K., Philhour, B. J. & Runyan, M. C. (2000). A Determination of the Hubble Constant Using Measurements of X-Ray Emission and the Sunyaev-Zeldovich Effect at Millimeter Wavelengths in the Cluster Abell 1835. The Astrophysical Journal 538(2): 505-516.

Author(s) from Durham


We present a determination of the Hubble constant and central electron density in the cluster Abell 1835 (z = 0.2523) from measurements of X-ray emission and millimeter-wave observations of the Sunyaev-Zeldovich (S-Z) effect with the Sunyaev-Zeldovich Infrared Experiment (SuZIE) multifrequency array receiver. Abell 1835 is a well studied cluster in the X-ray with a large central cooling flow. Using a combination of data from ROSAT PSPC and HRI images and millimeter wave measurements we fit a King model to the emission from the ionized gas around Abell 1835 with θ0 = 022 ± 002 and β = 0.58 ± 0.02. Assuming the cluster gas to be isothermal with a temperature of 9.8 keV, we find a y-parameter of 4.9 ± 0.6 × 10-4 and a peculiar velocity of 500 ± 1000 km s-1 from measurements at three frequencies, 145, 221, and 279 GHz. Combining the S-Z measurements with X-ray data, we determine a value for the Hubble constant of H0 = 59 km s-1 Mpc-1 and a central electron density for Abell 1835 of ne0 = 5.64 × 10-2 cm-3 assuming a standard cosmology with Ωm = 1 and ΩΛ = 0. The error in the determination of the Hubble constant is dominated by the uncertainty in the temperature of the X-ray emitting cluster gas.